

■Hoist Type (Shapes)

Suspended Type Frame mounted Type This hoist is fixed at the ceiling and used only for lifting and lowering cargo. This hoist is fixed on the pedestal and used only for lifting and lowering cargo. (This hoist is usually used for the same application as suspended type as well as the substitution for a winch. E-1/4 R-2-LK3 S-2.8-HS3 **Monorail Type Low-head Type Double rail Type** Motor Operated Traversing Hoist This hoist travels on the 2 rails of the hoist type overhead crane in the traverse direction (Since its stability is extremely high, in particular, this type is Motor Operated Traversing Hoist This hoist travels in parallel to the traverse rail by motor driven trolley.(This type of hoist is the most R-2-LM3 S-2-LD2

■Introduction of Products

Hoists

U2,HU2 Type (1/2-60t)

Mitsubishi original inverter specially developed for hoist has realized the niniaturization and versatility. Functions, which detect the hook position and change to higher hoisting speed when zero load is detected, offer high level of operation efficiency.

UR Type

(1-2.8t)

This hoist is produced by utilizing the power electronics technology accumulated by MITSUBISHI ELECTRIC, and has new variable speed type. This type is popular for excellent

S Type (1/2-60t)

For high frequency use S type series is heavy-duty type hoists for applications involving high frequency operations. Its winding speed and the duty class is the highest available. For more safety, a microprocessor control circuit which auto-matically preventsoverloading is installed.

R Type (1-2.8t)

For medium frequency use This hoist is structurally simple and economical with real capability. This hoist is provided with onerank higher capability and both power and worthy of its real capability and economical efficiency.

U-X · S-X Type (1/2-30t) (1/2-60t)

Inverter explosion-proof type (U-X Type) *Only 200V class is available sion-proof type in the industry. Explosion-Protection Examination.

E Type (150kg-490kg)

For low frequency use This series consists of easy-to-use, and

light-duty models that are suitable for a variety of uses. A full range of attachaments is available for every application. Double wire rope has been used to ensure absolute safety.

Crane related Equipment

Saddle for Crane(\sim 20t \times 27m)

<ST-D · MT>Top-Running Crane Saddle and <SP-D · MP>Suspension Crane Saddle are available. A traveling device that adopts Channel frame makes the installation to the main beam easy. (ST-D, SP-D)

Other related Equipments

<TIB> Inverter control box for saddle motor <LCV-B> Over load detection device (Detection of current)

Gear motor for Crane Saddle(SGM)

(0.4kw-3.7kw)

<SGM-A>is easy handling gear motor for crane saddle. There are two speed types of output axis rotation.(Low speed and High speed)
It allows customers to choose the most suitable type of gear motor.

Table of Contents

Mitsubishi Electric Hoist Catalogue

The Mitsubishi Electric Hoists Applications and Selection Diagram ———3

Basic term of the hoist (crane) ————4

The selection of the model

Function code ——5

The viewpoint of the catalogue ———5

Production model-6

Product Oveview --- 6

The description of S type series'mechanical features ———7

U2·HU2 Type ----9

S Type -----2

UR·R Type -----41

SGM-A

LCV-B -----

THE MITSUBISHI ELECTRIC HOIST APPLICATIONS AND SELECTION DIAGRAM

The diagram enables you to select the most suitable hoist type for each customer's condition:

The hoist type selection	n diagrar	n					
Total operating hour Rate of loading	Under 800	Over 800 to Under 1600	Over 1600 to Under 3200	Over 3200 to Under 6300	Over 6300 to Under 12500	Over 12500 to Under 25000	Over 25000
Load distribution Load distribution Load distribution Crane used normally in under 50% of the rated load	A	A	A	В	С	D	Е
100% 0% 0% Crane used normally from 50% to less than 63% of the rated load	A	A	В	С	D	Е	F
100% 0% 0% Crane used normally from 63% to less than 80% of the rated load	A	В	С	D	Е	F	F
100% 0% 0% Crane used normally in more than 80% of the rated load	В	С	D	Е	F	F	F
	Е Туре	R Type	U2·HU2 S Type	U2·HU2 S Type (special)		Crab Crane)

- ① Signs such as A or B grade stand for the application group of the crane structure standard.
- ② C grade applied the hoist of S, U2, HU2 series lift more than 12m.
- 3 The licence of Crab type production is necessary about the large-capacity hoist more than 30t. In addition, please specify the application group.

■Percentage of duty cycle and number of starts per Hr

Starts	per nr.						
Type	Percentage of du	uty c	yc l e	and	number o	of starts pe	r Hr
Internitient duty		Е	R	s	U2(~5t)	U2(7.5t~) HU2	UR
Lifting	Percentage of duty cycle(%)ED	25	25	40	40	25	25
Linuing	Number of starts Per Hr(S/Hr)	150	250	400	240	150	150
Traversing	Percentage of duty cycle(%)ED				25		
rraversing	Number of starts Per Hr(S/Hr)				250		

- Starting frequencies represent the number of starts during one hour at
- Special designs are required for applications involving load/time rations in excess of 40% or starting number frequencies in excess of 400/hour, Consult your dealer.

	Total time motor is under power during 1 hour of operation at busiest rate(minutes)	
ED(%)=	60 ×100	

■ The kind of the crane and crane classes of the hoisting devices

Classification of the crane	Class of the hoisting device
For Power plants, Disassemble and assemble crane	A
For Machinary and assembly factory crane	A
For general factory crane	B—D
Installed on a ceiling (with bucket, magnet)	D—F
Ladle crane	E-F
Charging crane	F
Forging crane	F
General use Portal bridge crane (with hook)	в—с

■ Limit at allowable use frequency consection(More than 7.5t, Less than 5t)

	Operating hour of a day		. 0	. 1		. 0	. 10	10.
load	Rate of loading	~	~2	~4	~6	~0	~10	16~
Light	Crane used normally in under 50% of the rated load							
Moderate	Crane used normally from 50% to under 63% of the rated load							
Heavy	Crane used normally from 63% to under 80% of the rated load							
Very heavy	Crane used normally in more than 80% of the rated load							

Basic term of the hoist (crane)

There are many technical terms in this catalogue and the words that are generally used. The most basic words are explained below.

Hois

1 Hoisting load

The maximum load that hoist (crane) can burden **The load that includes mass of a hook (lifting tod) and rated load.

2 Rated load

The load that deducted the mass of a hook and the lifting tool from hoisting load
**We display rating load with capacity.

3 Lift

Vertical movement distance of the hook

*The standard lift of Mitsubishi hoist

Low lift Less than 3t→6m More than 5t→8m

● High lift 12m

4 Hoisting(Lifting)/Lowering

Vertical motion of the load

5 Traversing

Motion of hoist

6 Travelling

Motion of crane

**Distance hoist moves (speed) ** Traversing distance(speed)
**Distance crane moves (speed) ** Travelling distance(speed)

7 Minimum head room

From the upper end of the lift

- Monorail Type …To under surface of I-beam
- Double rail type …To contact surface with the rail
- Suspended Type ···To the bolt hole center for suspending
- Frame mounted Type ···To the under surface of a mounting frame

*The minimum head room is indicaded as "N" dimensions.

(8) Wheel distance of the hoist

Distance between the center of the traversing rail (only as for the Double rail Type)

9 Span

Distance between the center of the traversing rails

110 Crane

Machine loaded by power, and to carry up and down, front and back and right and left

**The crane especially called Telfer works only up and down, right and left.

■The selection of the model

At first, select by purpose of use, use condition, frequency of use and decide concrete model by capacity, lift, shape(Suspended Type, Frame mounted Type, with traversing) and hoisting speed next.

1) Allowable frequency of use

Select the model by the start number of times (the number of times of the up and down operation of the push button), percentage of duty cycle.(Please refer to the hoist applications and selection diagram of P3.)

2 Capacity

S series, U2 series: 1/2-60t, HU2 series: 10t - 60t R series, UR series: 1t - 2.8t

③Lift

We have Low lift type and High lift type. As for the low lift, 6m (more than 5t, 8m), the high lift is 12m. Most models make both high lift and low lift.

(4)Shape

Suspended Type, Frame mounted Type, Monorail Type, Low-head Type, Double rail Type **There is some hoist which we don't produce by a model, capacity. (Please refer to production overview of P6.)

Function code

In the case of special hoists, the following code attaches to the end of function code.

Special specifications	Code
With hoisting inverter	Н
With hoisting and traversing inverter	S
With traversing inverter(S type, R type)	Т
With gear type limit swich	G

Special specifications	Code
With electric limit swich	E
With emergency brake	В
Explosion-proof type	Х

■ The viewpoint of the catalogue

①MITSUBISHI Hoist applications and selection diagram, allowable duty cycle and the number of starts per Hr.

The allowable duty cycle and the number of starts per Hr. are described. Confirm how much frequency you use hoist at, and select the most suitable model.

2 Production Overview Table

You can distinguish a production range according to the production overview table.

③Specifications

We describe basic specifications of the hoist. You can identify wire rope size, motor capacity, lifting and traversing speed, current value, in addition, basic specifications.

4 Outline Drawings

We have outline drawings type-by-type. Minimum head room(N dimentions), general weight, applicable I-Beams are described in it. Please warm being the model that the minimum radius curvatures grows big with the I-Bean of small size by the facia column of the applicable I-Beam.

■Production model

	_	_ ,		ontrol system						Capa	city(t)					
	Type	Frequency of use	Inverter	Magnetic contactor	1/2	1	2	3	5	7.5	10	15	20	30	45	60
Variable speed type	U2	High	0		0	0	0	0	0	0	0	0	0	0	0	0
variable speed type	UR	Medium	0			0	0	0								
Fixed speed type	S	High		0	0	0	0	0	0	0	0	0	0	0	0	0
rixed speed type	R	Medium		0		0	0	0								

High speed series "HU2" type and Explosion-proof series "S-X" type are also available.

Production Overview Table

⟨U2⟩⟨S⟩ Type

		Motor Operated Traversin	ng	Suspended Type	Frame mounted
Capacity(t)	Monorail Type	Low-head Type	Double Rail Type	- Suspended Type	Type
	LM/HM	LD/HD	LR/HR	LK/HK	LS/HS
1/2	6m/12m	6m/	_	6m/12m	-
1	6m/12m	6m/12m	_	6m/12m	6m/12m
2	6m/12m	6m/12m	_	6m/12m	6m/12m
2.8	6m/12m	6m/12m	6m/12m	6m/12m	6m/12m
5	8m/12m	8m/12m	8m/12m	8m/12m	8m/12m
7.5	8m/12m	8m/12m	8m/12m	8m/12m	8m/12m
10	8m/12m	8m/12m	8m/12m	8m/12m	8m/12m
15	8m/12m	-	8m/12m	8m/12m	8m/12m
20	/12m	-	/12m	-	/12m
30	-	-	/12m	-	/12m
40	-	_	6.5m/11.5m	_	6.5m/11.5m
45	_	_	/12m	-	/12.5m
60	-	-	_	-	9.5m/14.5m

〈HU2〉 Type

		Motor Operated Traversin	g	Suspended Type	Frame mounted	
Capacity(t)	Monorail Type	Low-head Type	Double Rail Type	Suspended Type	Type	
	LM/HM	LD/HD	LR/HR	LK/HK	LS/HS	
10	8m/12m	8m/12m	8m/12m	8m/12m	8m/12m	
15	8m/12m	-	8m/12m	8m/12m	8m/12m	
20	─/12m	-	—/12m	—/12m	—/12m	
30	-	_	—/12m	-	—/12m	
40	-	_	6.5m/11.5m	-	6.5m/11.5m	
45	-	_	─/12.5m	-	-/12.5m	
60	-	_	_	-	9.5m/14.5m	

⟨UR⟩⟨R⟩ Type

	<i>,</i> ,			
		Motor Operated Traversing		Cuppended Tupe
Capacity(t)	Monorail Type	Low-head Type	Double Rail Type	Suspended Type
	LM/HM	LD/HD	LR/HR	LK/HK
1	6m/12m	6m/	-	6m/12m
2	6m/12m	6m/	-	6m/12m
2.8	6m/12m	6m/	6m/	6m/12m

SUPERB MECHANICAL FEATURES BASED ON A TRADITION OF ADVANCED TECHNOLOGY.

Control Box, traversing motor and oil gauge are arranged on the same side for ease of maintenance.

Type Series Ultra type 1/2t~60t Included over load prevention function as standard equipment

Adoption of S type body

· This series is based on the model S, high-performance parent body which features highest-in-class hoisting speed, power, and durability, and withstands repeated operations

Resistance unit

- Cement resistances are unitized for downsizing. (For hoist rated for 10 ton or less)
- Adoption of the connector system facilitates hoist work. (For hoists rated for 10 ton or less)

Low-wearing electromagnet

- Heat-generation and wear are small under severe inching operations accompanied by braking operations at low motor-speeds in the inverter-driven power train (However, frequent use of the unloaded high-speed function may result in increased brake disk
- Hoists rated for 7.5 ton or more are equipped with an emergency brake.

Control panel integrating purpose-built inverter

- The control panel, made compact with an integrated inverter only for hoist, has improved environmental resistance.
- · Simple parameter setting operation
- * Allows operating speed to be specified freely.
- * Allows selection of light-load high-speed function. * Allows the position detection point to be specified
- · Troubleshooting facilitated by abnormality display.

Rotating sensor

- · Full-time monitoring of hoist motor motion: detects abnormalities and stops the machine if necessary as a safety precaution.
- · Detects position using rotation pulses; reduces machine speed when approaching the upper or the lower limit and stops it there.
- Detects light-load and automatically operates light-load high-speed.

Smooth operation

- · Infinitesimal and light-moving inching
- · Smooth changeover between highand low-speed operations

Introduction of UA type 45 kW series

· 45 kW hoisting motor has further improved machine speed

Τv	/ре	Capacity	Hoisting speed m/min		Motor	
Ľ		(t)		Capacity(kW)	Poles(P)	
		15	1.3/13			
		20	1.1/11			
		30	0.75/7.5			
ι	JA	40	0.56/5.6	45	4	
		45	0.5/5			
		50	0.45/4.5			
		60	0.37/3.7			

- *Outside dimensions of this hoist differ from those listed on this catalog; contact
- us for further information.

 * A general-purpose inverter will be installed.
- *Some functions of this hoist differ from those on other Soukai-TEI products

Manufacturing specifications for typical largecapacity hoists

Type	Capacity	Hoisting speed m/min	Hooting	g Motor
Турс	(t)	Hoisting speed Invitin	Capacity(kW)	Poles(P)
U	100	0.36/2.2	24kW ×2台	4
UA	100	0.67/4 Light-load high-speed function 6m/min	45kW ×2台	4

*400 V series are also available; contact us for further information,

AC Reactor

The inverter hoist might be damaged when it is connected directly with the large capacity power transformer(more than 500kVA transformer), there is a switch of the phase advance capacitor and the excessive peak current inflows into the power supply input circuit. In such caces, please make sure that the AC reactor is installed on the primary side of the inverter hoist.

Inverter hoist that develops new use and new field

					W	ire F	lope			Н	oistin	g							Trav	ersi	ng						
	0	_		į	<u> </u>	6	Ď	Σ	In	verte	r Op	eratio	on	-	Mond	orai l •	Low	-hea	d typ	е		Do	ouble	rail	type		
Туре	Capacity(t)			wondan type	norsii.	owhead type	Double railtype	ope spe		speed n/mir		Мо	tor		spe m/r			l Magn	Moto etic con peratio	tactor		m/ı	eed min		Magn	Moto etic co operati	ntao on
Эе	y(t)	_	_					Rope specification		On-load	Unloaded	Out put	Poles	operation	Magnetic	Operation	N N	Out but (g	2	Poles	operation	Magneti	Operation	N N	Out but (k	2	
		Low	High	2falls	4falls	4falls	4falls	on .	speed	High	led	(kW)		50 Hz	60 Hz	n Low speed	High speed	50 Hz	60 Hz		50 Hz	60 Hz	n Low speed	High spěed	50 Hz	60 Hz	
	1/2			φ 6.3	-	φ4	-	6×W(19)				1.2									_	-	-	_	_	_	-
	1			φ8 *3	_	φ 6.3	_	B Class JISG3525	1.4	13	19.5	2.4						0.22	0.26		_	_	_	_	_	_	Ť.
	2	6		φ 10	_	φ8	_					3.5									_	_	_	_	_	_	t
	2.8			φ 12.5	_	φ9	φ9		1.1	10	15	4.9	4	21	25	2.5	25	0.5	0.6								r
	3			φ 12.5	_	φ9	φ9					5.3								4 21	21	25	2.5	25	0.5	0.6	
	5		12	12.5	φ 11.2	φ 11.2	φ 11.2	6×Fi(29)	0.9	8	12	7.5															
	7.5			_	φ 14	φ 14	φ 14	B Class JISG3525	0.7	7	10,5	10						0.85	1.0								
U2	10	8		_	φ	φ	φ					12						1.5	1.8						0.85	1.0	
	15			_	16 ø	16	16 φ		0.6	6	12	20		12	15	1.5	15	0.85 × 2	1.0 × 2								
	20	_		_	20 φ	_	20 φ		0.5	5	10	20						1.5 × 2	1.8 × 2						1.5	1.8	
	30	_		_	22.4	_	22.4 \$\phi\$ 25	IWRC6XFi(29) B Class JISG3525	0.4	3.3	6.6	20		_	_	_	_	2	2	_	15	1.5 ×	1.8 × 2				
		6.5	_	_	_	_	φ	JISG3525 6×Fi(29)					6												2_	2	
	40	_	11.5	_	_	_	22.4 (8falls) ※1	B Class JISG3525	0.3	2.5	-	20		-	-	-	-	-	-	-						. 75	
		_	12.5	_	_	_	φ 25	JWRC6XFi(29)																	0.75 × 4	0.75 × 4	
	45	_	19	_	_	_	(6fals) **1	B Class JISG3525	0.3	2.2	_	20		-	-	-	-	-	-	-							
	10			_	φ 16	φ 16	φ					18						1.5	1.8						0.85	1.0	ŀ
	15	8		_	φ 20	-	16 \$\phi\$ 20	6XFi(29) B Class	0.9	9	13.5	30		12	15	1.5	15	0.85 × 2	1.0 × 2	4							
	20	_	12	_	φ 22.4	_	φ 22.4	JISG3525	0.75	7.5	11	30						1.5 × 2	1.8 × 2						1.5	1.8	
	30	_		_		_	φ 25	IWRC6XFi(29) B Class JISG3525	0.5	5	7.5	30		-	_	_	_		_	_	15	18	1.8	18	1.5 ×	1.8 × 2	l
		6.5	_				φ	6×Fi(29)					4												2	2	
HU2	40	_	11.5	_	_	_	22.4 (8falls)	B Class JISG3525	0.4	3.7	_	30		_	_	_	_	_	-	_					0.75	0.75	
	45	_	12.5			_	φ25	IWRC 6XFi(29)	0.4	3.3		30													× 4	0.75 × 4	
		_	19				(6falls)	JISG3525				-															-
	50 **2	_	_	_	_	_	_	_	0.005	0.05	*2	30		-	_	_	-	-	-	-	_	_	_	_	-	-	
	60	_	_	_	_	_				0.0416		_															-
	*2	_	_	_	-	-	-	_	(0.25)	(2.5)	*2	30		-	_	-	-	-	-	-	-	-	-	-	-	_	

- ※3 Rope specification of 1t 2falls is 6×Fi(29)

 - ●Power supply···3-phase 200V 50/60Hz control 200V, 220V 60Hz control 220V (400Vclass is also available)··3-phase 400V 50/60Hz control 200V, 440V 60Hz control 220V 3-phase 380V 50Hz control 48V(100V and 24V are also available)

Operating method···Push button switch operations

Standard Specifications

Supervised type 2 Powis 4 A Bertis 1
Motor control traversity 1 Powis 1 Servise 1
Motor powis 1 Powis 1

Note: There are differences between 200V class and 400V(380V) class in outline and specifications, etc. Please contact us for 400V(380V) class separately.

Type (200V/400 class)

Features of U2·HU2 type

1	Reduction of shock at starting and stopping	This feature reduces the shaking of the hoisting load and the building, facilitating delicate positioning.
2	Selectable hoisting speed	Hoist speed can be freely selected in a range from minimum speed to standard speed, allowing selection of the most suitable speed for a particular job. Switching between high and low speed is facilitated by a two-stage push-button operation.
3	Highly controllable inching operation	By inching operation, hook position can be controlled accurately with ease. The traversing inverter allows sharp speed reduction by reverse direction operation.
4	Low-wearing brake and machine parts	Low-wearing brake disks reduce shock on wire rope, sheaves, and gears, extending their service life. Non-contact main circuits eliminate the replacement of electromagnetic contacts required in the case of general-purpose hoists. (However, frequent use of light-load high-speed mode may increase brake disk wear.) Simplified design has reduced the number of components. This contributes to reduce failure risk and lengthening parts service life. Able to check wear of parts through the check window on the brake box. (Wear limit guides machined on the pressure plate and brake disks. Able to check whether the adjustment ring has dropped.)
5	Electronic limit switches (for the upper and the lower limit)	The position of hook is detected, for automatic deceleration and stopping. All set points can be moved together. This simplifies after wire rope replacement. Unnecessary set points can be nullified; for example, when using the lower limit stop point only, adjustment can be completed quickly, because other points do not need setting.
6	Light-load high-speed operation function	This function allows an increase of up to 1.5 times the standard speed for machines rated for 7.5 ton or less and up to twice the standard speed with machines rated for 10 ton or more. The light-load evaluation criterion is adjustable within a range between 0 and 25 percent of the rated load. It is possible to accommodate not only the unloaded state but also the weight of hoisting accessories, up to 25% of the rated loading. The light-load high-speed function can be used even under the combined hoisting operation. Settings are adjustable, so R-phase voltage may be output at terminal OUT3 for evaluation. With terminal OUT3 of each hoist connected to terminal IN4 of the partner hoist, light-load high-speed mode is activated when the partner hoist also detects light-load state; This arrangement ensures coordinated switching to light-load high-speed mode. Settings can now be changed for the light-load high-speed frequency
7	The overload prevention function is now a standard feature	The overload evaluation criterion is adjustable within a range between 100 and 125 percent of the rated load. The overload detection signal is output by terminal [OUT3]. It can be set to stop hoisting when the overload is detected.(The overload prevention function is set not to stop hoisting before shipment.)
8	Abundant output signals	Signals are output from out1 at the upper limit stop point, and from out2 at the lower limit. Signals are output from out3 when overload evaluation carried out, while signals are output from OUT4 during operation. Settings can be made to obtain signals from OUT3 when light-loading evaluation is carried out.
9	The speed-coordination function	This improvement suppresses the tilting of the hoisted load occurring in combined hoisting operation. Both low-speed hoisting and low-speed lowering operations are carried out within the 20% range, the JIS specification. Stability of hoisting and lowering speeds is very high to 1%.
10	Contribution to environment	We try for the removal of an environmental toxic substance. (Lead is not included in solder of a print board, alloy stopper of a rope terminal, and paint. Changed 6 values chrome plating on 3 values chrome plating.) Asbestos is not included in brake disks and packing at all. Achieved energy saving because of few motor temperature rises at the time of inching operation.
11	Protection function	Stop automatically temporarily for safety when a power failure, an abnormal power-supply voltage, and the overcurrent, etc. are detected. The error release · · · If the push button is reset excluding a part of error mode, it is possible to release, and to drive. (The stop mode for which driving reset is necessary recommends checking.)

Rotation sensor The rotation sensor monitors U2 type functions.

The rotation sensor's encoder constantly monitors rotation speed and direction of the motor shaft (the first gear shaft), displaying the following functions:

	Function	Description
1	Drop detection function	If rotation is in the "down" direction despite an "up" pushbutton command, this function im- mediately activates the hoist brake, preventing the load from dropping.
2	Electronic limit switch (for the upper and the lower limit)	This switch totals the number of rotation pulses and decelerate or stop at the specified deceleration or stop position, and stores the travel distance.
3	Unloaded high-speed function Light-load high-speed function	The amount of motor slip depends on the mag- nitude of the load. When the amount of slip falls below a preset level, the hoist is automatically judged to be in unloaded state, it switches over to high speed mode.
4	Speed-coordination function	This revises frequency to maintain constant speed when the load changes.

Operation patterns changed by the pushbutton operation

Operation history display function

Failure history

When a failure occurs, stopping the hoist, this function helps to track down the cause of failure by showing the history of past failures. It helps solve the problem when a failure has occurred.

Error history orthistory

orthistory

Number of times of operation and the time when an error occurred are output.

Number of : This display shows the hoist's working history. It is also useful

starts/operating in determining when to replace consumables.

*Contact us for a specially-built product.

U2 TYPE application examples

Plating line and metal mold machining line

Transportation of fragile items like glass products(No shocks are transmitted to the

Accurate positioning (The hoisted load does not shake.)

Options

*Improved ease of use

Synchronous by speed-coordination function

Controls tilt of load when hoisted by two or more hoists.

Multi-stage speed function

This function is useful in automatic operations using a sequencer; for one of eight-stage inputs for either hoisting or lowering a load, the machine can be operated at the desired speed.

Position detection multi-point output

Using an ELS circuit board, this function provides operation information on how the machine is being used.

Rotation signal output

Using a BTS circuit board, this function allows a two-phase signal to be sent to the sequencer or similar devices.

Hoist-specific inverter control panel

- *The compactly-designed control panel is also vibration resistant.
- *Parameter settings have been simplified, requiring only four buttons.

Attention in use

- The inverter hoist doesn't stop the push-button of turning off at once. It stops as the cushion working, and operate in consideration of the stopping distance, please
- in consideration of the stopping distance, please.

 Using memory unit of the microcomputer data, Please avoid the entering cutting of a needless power supply.
- (The longerity frequency of the memory unit is 100,000 times in the power supply interception.)

 *Notes concerning the noise Posorder and the malfunction of the voice might be caused by the setting condition in a nearby television and an electronic equipment including the radio etc.For this case, we will recommend the installation of the noise filter.

Monorail Type (1/2t·1t·2.8t·3t·5t)

***Contact us for 400V class outline**

U2-1/2-LMH2 IF2 Free side EL E2 Molor side Online of Molor side

	Model LMH2 LM					U2	-1/2							l	J2-	1			U	2-2		U	2-2.8	3(3)			U2	-5		
	Juei	LN	1H2			LMS	2	H	IMH:	2	H	IMS:	2	LMH	2 LMS	32 H	MH2	IMS2	LMH2	LMS	2 HMH	2 HMS2	LMH3 LN	1S3 I	нмнз ни	MS3	LMH3	LMS3	НМН	13 HMS3
Cap	p.(t)						1.	/2								1					2			2.8	(3)				5	
Lift((m)			6	6					1	2				6		12			6		12	6		12			В		12
	Α			31	5					4	35			- 3	321		50	3	3	52		09	373		542		6	B5		810
	В			43	3					4	73				518		55	1	5	77	(05	658		689		8	30		955
	С						32	24								345	,			(383			40	8			4	10	
	E1			38	В					- 1)	00					100)				05			10	5			1	10	
	E2			58	В					- 1	00					100)				105			10	5			1	10	
me l	F1			70	0					1-	40					140)				35			13	5				_	
nsi.	F2			12	20					1.	40					140)				35			13	5				_	
Dimensions(mm)	K 625			-							:	208		16	7		2	210			21	6			2	65				
3	N			62	25					6	35					735	,			8	375			104	45			9	96	
-	0			73	3					8	0					80					14			11	4			1	25	
	Р			600	00					12	000			6	000		120	00	6	000	12	2000	6000)	1200	0	80	000	1	2000
	R			45	55					5	05					545	,			(32			72	:0			7	66	
	S			50	0					9	3				71		10	5		58		101	60		97					
	Т			58	В					1:	23				42		11	9		49	-	113	47		115					
Min.rad.cu	urvature(m)		_	1.2	(4.0)				1.8	(7.0)				1.	8 (7	.0)			1.8	3 (5.0)			2.1	0		5.0	6.3	5.0	6.3
Weig	jht(kg)	1:	20			120			150			150			175		190	1	2	90	3	315	390		425		6	30		700
	k weight(kg)						4	.5								7.5					15		<u> </u>	27				- 4	12	
Beam relate	ed dimensions	_	_	J	Q	U	٧	D	Н	J	Q	U	٧	D	Н	J	Q	U	D	н	J	U	DH	J	Q	U	D	н	J	Q U
	75×5.5	364 3	_	_		75	_		24	_	-	_		360	-	_	140	_						_	-					
흥 200×	100×7	376 5	4 2	26	101	125	265	372	48	33	140				48		140		453			37 140		_	-					
<u>ड</u> ्ड 250×	125×7.5							385	74	31	142	203	325	385	74	31	142	203	465				465 64	34	4 169	188				
⊕ 300×	150×8																		478	-	_	70 237	_	_	-				_	
ユ	150×11.5			-	-														478	90	29 1	79 228	478 90	2	4 179 2			_	_	89 219
	175×13			_	-																						524	96 2	27 1	93 365
	190×13 .cur()at			_	-					-	-					_														

Monorail Type (7.5t · 10t · 15t · 20t)

***Contact us for 400V class outline**

U2-7.5A · 10A

U2-15A · 20A

	odel			U2-	7.5A				-	J2-10	0A					U2-	15A					U2-	20A		
MC	aei	LMH	6 L	MS6	НМН	16 H	MS6	LMH6	LMS	66 H	НМН6	Н	MS6	LMH	6 L	MS6	НМН	6 H	MS6		нмне	3		HMS6	3
Ca	p.(t)			7.	.5					10						1	5					2	0		
Lift	t(m)		8			12			8			12			8			12				1	2		
	Α		881			1006		9	49		1	074			1045			1195				12	43		
	В		1004			1129		9	59		1	084			1085			1235				12	35		
_	С			45	58					493	3					55	8					58	33		
Dimensions(mm)	E			30	00					328	3					30	00					32	28		
ens	F			27	70					296	6					27	70					29	96		
Ön	G			-	-					_					620			800				80	00		
Œ,	K			49	97					528	3					43	30					45	55		
3	N			12	70					1450	0					19	30					20	90		
	0			17	73					193	3					17	73					19	93		
	Р		8000			12000	1	80	000		12	2000			8000			12000				120	000		
	R			90	03					988	3					12	68					13	98		
Min.rad.c	urvature(m)	5.0	1	12.5	5.0		12.5	5.0	12.	5	5.0	1	12.5			Straig	htline					Straig	ghtline		
Weig	ght(kg)		900			970		12	250		1	350			2200			2350				27	00		
Hook bloc	k weight(kg)			8	0					100)					19	90					28	30		
I-Beam relat	ed dimensions	D	Н	J	Q	U	٧	D	Н	J	Q	U	٧	D	Н	J	Q	U	٧	D	Н	J	Q	U	>
흥 400×	150×12.5	578	60	49	254	117	150	604	54 4	19 2	279 1	141	210			-						-			
450× 600×	175×13	590	85	49	254	117	150	617	78 4	19 2	279 1	141	210	590	85	49	254	117	347	616	81	49	279	141	45
를 600×	190×13	598	100	50	253	116	151	624	94 5	50 2	278 1	140	211	598	100	50	253	116	348	624	96	50	278	140	45

Note Applicable I-Beem ==Standard

Low-head Type

(1/2t·1t·2t·2.8t·3t·5t)

****Contact us for 400V class outline**

				ι	J2-1/2	2				U2-1					U2-2	2			U2-2	2.8 (3	1)				U2-	5	
	Mo	del	L	DH2		LDS	32	LDH2	LDS	2 H	DH2	HDS2	LDH2	LDS	32 H	IDH2 I	HDS2	LDH3	LDS3	HDH	-13 HE	0S3 L	DH3	LDS	33 H	HDH3	HDS3
	Cap).(t)			1/2					1					2				2.8	(3)					5		
	Lift((m)			6				6	Т	12	!		6		12	!		6		12			8	Т	1	2
		Α			433			-	44		61	1		157		635	5	4	72		622		6	85	Т	8	10
		В			528			- (16		784	4	6	68		847	7	7	11		861		8	30		9	55
		С			371					423					473				4	90					513	ţ	
		D			272					356					467				5	58					764	ļ	
	₽	E1			58					100					105				1	05					110)	
	ien [E2			38					100					105				1	05					110)	
	ši [F1			120					140					135				1						185	;	
-	Dimensions(mm)	F2			70					140					135				1	175					175	;	
	3	N			345					410					505	i			5	175 535					650)	
		0			73					80					114				1	14					125	5	
		Р			6000			6	000		1200	00	6	000		1200	00	6	000		12000		80	000		120	000
		R			410					495					588				6	43					676	3	
		Т			66					58					95				1	80					115	5	
Min.	.rad.cu	rvature(m)		1	1.2 (4.	0)			1.	8 (7.	0)			1	8 (5	.0)			2	2.0					6.3	ŀ	
	Weigl	ht(kg)		150		150)	2	200		215	5	3	305		340)	4	05		440		6	40		7	10
Hoo	k block	weight(kg)			5.5					8					15				2	25					42		
I-Bea	am relate	d dimensions	G	Н	J	Q	U	G	Н	J	Q	U	G	Н	J	Q	U	G	Н	J	Q	U	G	Н	J	Q	U
- I		75×5.5	364	30	19	101	75	360	24	21	140	105			_										_		
횽		100×7	376	54	20	101	125	372	48	21	140	155	453	40	26	167	140	<u></u>							_		
ica		125×7.5						385	74	19	142	203	465	64	24	169	188	465	64 2			88			_		
1 50 1		150×8											478	90	23	170	237		_						_		
am (_	150×11.5			_								478	90	14	179	228	478	90	16 1	179 2		_	72	31	189	
1 - 1	_	175×13			_																		524	96	27	193	365
	600×	190×13			_					_																	

Note rad cur()at I-Beam U2-1/2、1···150×75×5.5 U2-2···200×100×7 Note Applicable I-Beam ==Standard ==required special attachment

Low-head Type (7.5t·10t)

***Contact us for 400V class outline**

U2-7.5 · 10

Γ.				U2-7.5A					U2-10A		
'	Mode l	LDH6	LDS	6 H	HDH6	HDS6	LDH6	LDS	6 H	HDH6	HDS6
	Cap.(t)			7.5					10		
L	_ift(m)		8		12			8		12	
	Α		881		1006			949		1074	
	В		1004		1129			959		1084	
	С			536					619		
	D			859					946		
۱ ۵	E1			150					604		
) in	E2			150					164		
Dimensions(mm)	F1			265					528		
ons	F2			265					162		
) j	N			880					990		
=	0			173					193		
	P		8000		12000	<u> </u>		8000		12000	
	R			756					873		
	T			86					363		
	eight(kg)		1000		1070			1550		1650	
-	ock weight(kg)			80					100		
-	elated dimensions						J	Q	U		
	0×175×13 2 rai l s	678	257	49	254	109	711	253	49	279	141
Beam(mm)	0×190×13 2 rai l s	693	288	50	253	108	726	284	50	278	140

Note Applicable I-Beem == Standard

Double rail Type

(2.8t·3t·5t)

***Contact us for 400V class outline**

U2-28 · 3

U2-5

			Length be	itween topes (cower ii	iiiii				
Me	odel		U2-2	2.8 (3)			U2-	-5	
IVIC	Juei	LRH3A	LRS3A	HRH3A	HRS3A	LRH3A	LRS3A	HRH3A	HRS3A
Ca	p.(t)		2.8	(3)			5	i	
Lift	t(m)		6	1	2	8	8	1:	2
	Α	4	72	62	22	68	85	81	0
	В	7	11	86	31	80	30	95	5
	С	6	50	95	50	90	00	11:	50
	E		68				68		
	F		19	91			16	7	
	G		7	5			88	3	
	Н		53				51		
_	1		60				41		
Dimensions(mm)	J		41				54		
ensi	N		34				34		
ons	0		5				12		
ĝ	Р	60	000		000	80		120	000
3	Q		7				12		
	R		6				65		
	S		3				40		
	T		4				30		
	V		35		30		17	10	
	W	4	53		53	59	90	84	10
	X		15				15		
	Y		17				17		
147 -	Z		4				45		
	ht(kg)	4	40		90	69	90	77	′0
	weight(kg)		2		101		42		
Applicable	i-beam(mm)				12kg rai i s or 38mn	n steel square bar	s		

Double rail Type

J2⁽⁷⁾

(7.5t·10t·15t·20t·30t)

***Contact us for 400V class outline**

U2-7.5A · 10A

U2-15A · 20A · 30A

This member is for the traverse gear case protection.
(There is no obstacle even if it
detaches it after the installation.)

				ength betwe	en ropes (L	ower limit)									
Мо	alal	U2-	7.5A		U2-	10A			U2-	15A		U2-2	0A	U2-3	30A
IVIO	del	LRH6 LRS6	HRH6 HRS	LRH6	LRS6	HRH6	HRS6	LRH6	LRS6	HRH6	HRS6	HRH6	HRS6	HRH6	HRS6
Cap	o.(t)	7	.5		1	0			1	5		20)	30	0
Lift	(m)	8	12	8	3	1	2	8	3	12	2	12	2	12	2
	Α	881	1006	94	19	10	74	10	45	119	95	124	43	145	56
	В	1004	1129	95	59	10	84	10	85	123	35	123	35	128	35
	С	950	1200	95	50	12	00	10	00	130	00	130	00	140	00
	E	71	60		84	40			10	00		104	15	119	90
	F	1	70		11	70			22	20		22	0	22	:0
	G		223 233 243		24		24	_							
	Н	5	70		6	13			76	60		79	-	85	-
	I		83			30				03		72		80	-
Dim	J		75			75			8			82		86	
ens	N		30			10			86			91		102	
ions	0		0			88			3	_		32		15	
Dimensions(mm)	Р	8000	12000	80	00	120	000	80		120	00	120		120	
n)	Q		5			80			8	5		12	0	11	-
	R		7			32				4		84		89	_
	S		5			55				5		55		45	_
	Т		0			3				0		70		80	
	V	105	80		00	10		11		13		12		15	
	W	660	910	62	20	87	70	66		96	0	94		99	_
	Х		90			90			2			25		25	_
	Υ		25			25				35		28	-	28	-
	Z Weight(kg) 950		2			2				8		58		73	
		950	1030	13	00	14	10	20		220	00	260		370	
Hook block			10			00				90		28	0	38	
Applicable I	-Beam(mm)		15kg rai l s or 44n	m steel sq	uare bars	S		2:	2kg rai l s	or 50mm :	steel squ	are bars		37kg rails or 65mm	steel square bars

Suspended Type

(1/2t·1t·2t·2.8t·3t·5t)

***Contact us for 400V class outline**

						_					
	4.1	U2	-1/2	U	2-1	U	2-2	U2-2	2.8 (3)	U2	-5
Mc	del	LKH2	HKH2	LKH2	HKH2	LKH2	HKH2	LKH3	НКН3	LKH3	НКН3
Ca	p.(t)	1.	/2		1		2	2.8	(3)		5
Lift	(m)	6	12	6	12	6	12	6	12	8	12
	Α	315	486	321	508	352	509	373	542	685	810
	В	433	473	518	551	577	605	658	689	830	955
	С	3:	24	3	45	3	83	41	08	4	10
	E	170	230	230	230	230	230	230	230	29	90
	F	28	33	3	33	(38	4	3	60	61
	G 140 H 155		117	1	17	1	51	11	76	22	29
	Н	15	55	1	60	1	77	2	15	22	25
₽	ı	75	78	(53	(57	8	0	105	106
Dimensions(mm)	J	,	3		12	2	21	8	9	1	14
oisio	K	15	51	1	67	1	90	2	16	23	36
ns(r	L	283	493	298	518	323	508	323	523	725	975
)jj	М	32	42	34	67	47	75	46	77	217	342
_	N	5	70	6	70	8	00	91	65	90)5
	0	20	24	2	24		33	3	3	3	8
	Р	6000	12000	6000	12000	6000	12000	6000	12000	8000	12000
	R	328	333	3	73	4	25	5	18	54	16
	S	50	93	71	105	58	101	60	97	-	-
	Т	58	123	42	119	49	113	47	115	-	-
	X	8	7	1	07	1	40	1	72	20)5
	Y	8	3	1	05	1	50	15	50	20	06
	Z	2	.0		36	;	30	3	0	3	0
	ht(kg)	100	110	145	160	230	255	325	360	580	650
Applicable	I-Beam(mm)	4	.5	7	'.5		15	2	.7	4	2

The pushbutton position of U2-1/2 is positioned on the side of hoisting deceleration part.

Suspended Type

(7.5t·10t·15t·20t)

***Contact us for 400V class outline**

Mo	dal	U2-	7.5A	U2-	10A	U2-	15A	U2-20A-HKH6
IVIO	del	LKH6	HKH6	LKH6	HKH6	LKH6	HKH6	02-20A TINTO
Cap	o.(t)	7	.5	1	0	1	5	20
Lift	(m)	8	12	8	12	8	12	12
	Α	881	1006	949	1074	1045	1195	1243
	В	1004	1129	959	1084	1085	1235	1235
	С	45	58	49	93	55	58	583
	E	30	00	32	20	620	800	800
D.	F	5	i5	6	0	8	10	100
Dimensions(mm)	G	25	52	25	52	22	25	225
nsio	Н	25	55	29	90	36	65	410
ns(I.	12	20	12	20	10	78	217
3	J	4	5	10	00	7	'3	118
_	К	49	97	52	28	40	30	455
	L	796	1046	786	1036	831	1131	1131
	М	4	40	46	50	-	_	_
	N	11	65	13	80	16	80	1800
	0	4	7	5	3	7	'8	103
	Р	8000	12000	8000	12000	8000	12000	12000
	R	60	00	66	50	84	45	935
	Х	18	88	2-	18	292 (to	resister)	322 (to resister)
	Υ	15	52	22	20	22	20	220
Weig	ht(kg)	700	770	1050	1150	1500	1650	2000
Applicable I	-Beam(mm)	8	10	10	00	15	90	280

Frame mounted Type

(1t·2t·2.8t·3t·5t)

***Contact us for 400V class outline**

U2-1·2·2.8·3·5

	4-1	U	2-1	U	2-2	U2-2	2.8(3)	U2-	5
Mo	aeı	LSH2	HSH2	LSH2	HSH2	LSH3	HSH3	LSH3	HSH3
Cap	o.(t)		1		2	2.8	(3)	5	
Lift	(m)	6	12	6	12	6	12	8	12
	Α	321	431	352	445	373	473	685	810
	В	518	628	577	670	658	758	830	955
	С	3-	45	3	83	4	08	41	0
	D	385	605	420	605	430	630	850	1100
	Е	435	655	480	665	500	700	920	1170
	F	7	'5		38	9	9	11	5
	G1•G2	12	1/84	141	/109	170	/130	175/	145
_	H1·H2	151	/114	178	1/145	210	/170	220/	190
Dimensions(mm)	K	11	67	1	90	2	16	23	6
is.	L	1:	80	2	25	2	75	26	0
ons	М	1-	48	1	57	1:	81	20	6
3	N	3:	30	4	10	4	90	42	0
2	0	1	5		19	2	24	28	3
	Р	6000	12000	6000	12000	6000	12000	8000	12000
	R	ε	60	7	70	8	30	90)
	S	71	182	58	165	60	166	_	
	Т	42	42	49	49	47	47	ļ	
	U	1	8	2	24	2	27	31	l
	Х	1	07	1	40	1	72	20	5
	Υ	1	05	1	50	1	50	20	6
	Z	3	16		30	3	80	30)
Weigl	ht(kg)	125	145	185	225	320	360	580	650
Hook block	weight(kg)	7	.5		15	2	27	42	2

Frame mounted Type

(7.5t·10t·15t·20t·30t)

U2-7.5A · 10A

U2-15A · 20A · 30A

		U2-	7.5A	U2-	10A	U2-	15A		
Mo	ode l	LSH6	HSH6	LSH6	HSH6	LSH6	HSH6	U2 - 20A-HSH6	U2-30A-HSH6
Ca	p.(t)	7	.5	1	0	1	5	20	30
Lift	(m)	8	12	8	12	8	12	12	12
	Α	881	1006	949	1074	1045	1195	1243	1456
	В	1004	1129	959	1084	1085	1235	1235	1284
	С	4	93	50	31	6:	33	663	713
	D	920	1170	920	1170	960	1260	1260	1380
	Е	1010	1260	1010	1260	1080	1380	1380	1480
ĺ	F	1-	40	15	50	1	70	170	200
_	G	3	70	3	70	50	00	500	620
≌	Н	4	70	45	90	6:	30	640	770
ens	K	4	97	50	00	4	58	470	467
, iii	L	2	90	3	10	3.	70	395	435
Dimensions(mm)	M	2	45	26	35	4-	43	468	522
크	N	5	B0	6	70	8	10	870	960
	0	3	15	3	5	4	.7	47	54
	Р	8000	12000	8000	12000	8000	12000	12000	12000
	R	1)	00	1:	20	1:	30	140	150
	U	3	11	3	5	4	-1	41	49
	Х	10	88	2	18	2	75	308	320
	Y	18	52	2:	20	2:	20	220	220
	Z	5	i0	5	3	7	0	70	80
Weigh	nt(kg)	700	770	1050	1150	1500	1650	2000	3300
Hook block	weight(kg)		10	10	00	19	90	280	380

Monorail Type (High speed type)

HU2-10A • 15A • 20A • 30A

HU2-15A · 20A

M	odel			HU2	:-10A					HU:	2-15A					HU:	2-20A		
IVI	odel	LMH	6 L	.MS6	НМН	6 H	HMS6	LMH	16 L	MS6	HMH	16	HMS6		НМН6			HMS6	
Ca	ap.(t)			1	0					1	5					2	20		
Lif	ft(m)		8			12			8			12				1	2		
	Α		949			1074			1045			1195				12	43		
	В		1055			1180			1205			1355				13	55		
	С			5	13					5	58					58	83		
0	Е			3	28					31	00					32	28		
Dimensions(mm)	F			2	96					2	70					29	96		
nsi	G								620			800				80	00		
)snc	K			4:	27					4	43					4	55		
3	N			14	50					19	30					20	90		
_	0			19	93					10	73					19	93		
	Р		8000			12000			8000			12000				120	000		
	R			98	38					12	68					13	198		
Min.rad.c	curvature(m)	5.0		12.5	5.0		12.5			Straiç	tht line					Straig	ght line		
Weig	ght(kg)		1400			1500			2400			2550				30	50		
Hook bloc	ck weight(kg)			10	00					19	90					28	80		
l-Beam rela	ted dimensions	D	Н	J	Q	U	٧	D	Н	J	Q	U	٧	D	Η	J	Q	U	٧
	400×150×12.5	604	54	49	279	141	32												
Heam(mm)	450×175×13	617	78	49	279	141	32	590	85	49	254	117	347	616	78	49	279	141	451
	600X190X13	624	94	50	278	140	33	598	100	50	253	116	348	624	94	50	278	140	452

Note Applicable I-Beem == Standard

A B B C C C C C C C C C C C C C C C C C	K K R T R T R T R T R T R T R T R T R T
---	---

11-	odel	HU2-	10A	HU2-	15A	HU2-20A	HU2-30A
IVIO	odei	LSH6	HSH6	LSH6	HSH6	HSH6	HSH6
Cap	p.(t)	1	0	1	5	20	30
Lift	(m)	8	12	8	12	12	12
	Α	949	1074	1045	1195	1243	1456
	В	1055	1180	1205	1355	1355	1405
	С	55	53	63	33	663	713
	D	920	1170	960	1260	1260	1380
0	E	1010	1260	1080	1380	1380	1480
Dimensions(mm)	F	15	50	17	70	170	200
insi	G	37	70	50	00	500	620
ons	Н	49	90	63	30	640	770
Ē	K	41	14	45	58	470	567
ے	L	31	10	37	70	395	435
	M	44	13	44	13	468	522
	N	67	70	81	10	870	960
	0	3	5	4	7	47	54
	Р	8000	12000	8000	12000	12000	12000
	R	12	20	13	30	140	150
	U	3	5	4	1	41	49
	Х	302 (to resister)	218	27	75	308	320
	Υ	22	20	22	20	220	220
	Z	5	3	7	0	70	80
	ght(kg)	1200	1300	1700	1850	2200	3500
Hook bloc	k weight(kg)	10	00	19	90	280	380

Double rail Type(High speed type)

HU2-10A • 15A • 20A • 30A

		ш	J2-10A			HU2	15.0		HU2	20.4	HU2	20.4
Mo	del	LRH6 LRS		HRS6	LRH6	LRS6	HRH6	HRS6	HRH6	HRS6	HRH6	HRS6
C.	p.(t)	LNH6 LNS	_	ппоо	LNNO		5	ппоо	2		30	
_			10	•								
Lift	(m)	8		2		8	12		1		12	
	A	949	_	74		045	119			43	145	
	В	1055	_	80		205	135			55	140	
	С	950		200	1)	000	130	00		00	140	
	E		840			10	00		10	45	119	90
	F		170			2:	20		22	20	22	0
	G		253			2	43		24	18	24	6
	Н		613			7	30		79	90	85	0
	1		650			7	03		72	23	80	6
말	J		753			8	13		82	24	86	8
l en	N		710			8	30		9-	10	102	20
Si	0		38			3	0		3	2	15	5
Dimensions(mm)	Р	8000	12	000	8	000	120	00	120	000	120	00
∄	α		30			8	5		12	20	11	5
	R		82			8	4		8	4	89	9
	S		55			5	5		5	5	45	5
	Т		53			7	0		7	0	80)
	٧	100	1	00	1	10	13	5	12	25	15	0
	W	620	8	70	6	60	96	0	94	15	99	0
	Х		190			2	50		25	50	25	0
	Υ		225			2	35		28	35	28	5
	Z		52			5	8		5	8	73	3
	ht(kg)	1450	15	60	2:	200	240	00	28	00	390	00
	k weight(kg)		100			19	90		28	30	38	0
Applicable	-Beam(mm)	15kg rails or 4	mm steel squa	re bars		22kg r	ai l s or 50mm	steel squar	e bars		37kg rails or 65mm	steel square bars

Double rail Type(High speed type)

U2-40A、HU2-40A

		U2-	40A	HU2	-40A	U2-	-45A	HU2-	45A
N	lodel	LRH6	HRH6	LRH6	HRH6	HRH6	HRH6	HRH6	HRH6
C	ap.(t)	4	10	4	0	4	5	4	5
Li	ft(m)	6.5	11.5	6.5	11.5	12.5	19	12.5	19
	Α	1525	1875	1525	1875	1740	2090	1740	2090
	В	1515	1865	1635	1985	1565	1915	1685	2035
	С	1700	2400	1700	2400	1780	2480	1780	2480
	D	18	374	18	74	21	14	21	14
_	F	2	87	28	37	5	20	52	10
Dimensions(mm)	G	2	87	28	37	3	50	35	i0
ens	Н	6	81	68	31	8	07	80	17
long.	ı	6	19	6.	19	6	70	67	0
ä	J	10)55	10	55	12	100	12	00
3	N	11	10	11	10	14	50	14	50
	Р	7500	12500	7500	12500	11000	16000	11000	16000
	Т	8	31	8	1	6	37	63	7
	Х	3	50	35	50	3:	50	35	0
	Υ	4	19	4	19	4	19	41	9
	Z	-	_	-	=	7	'5	7	5
We	ight(kg)	5000	5500	5100	5600	6200	6700	6300	6800
Hook blo	ck weight(kg)	7:	50	75	50	7:	30	73	10
Applicable	e I-Beam(mm)				37kg rails or 65m	m steel square bars	3		

S type offers the best lifting speed, power and durability in this class.

Spec	cifica	tions	;																				
						Wire	rope			H	loistir	ng							ersing				
		Ι,	_											Mon	o-rail	·Low				Do	uble-		
-	Зара	[#(1)	3	S	Low	Dout	Rop	Spe			Moto	r I				Motor					Moto	r I
Туре	Capacty(t)		2	Monoral type		Lowhead type	Double railtype	Rope specification	(m/ı			tput (W)	Poles		eed min)		tput (W)	Poles	Spe (m/	min)		tput (W)	Poles
		Low	High	2falls	4falls	4falls	4falls	cation	50 Hz	60 Hz	50 Hz	60 Hz	· s	50 Hz	60 Hz	50 Hz	60 Hz	Ø	50 Hz	60 Hz	50 Hz	60 Hz	Ö
	1/2			ф 6.3	_	φ4	_	6×W(19)B class JIS	11	13	1.0	1.2				0.22	0.26		_	_	_	_	
	1			φ8 ⊛3	_	φ 6.3	_	G 3525		13	2.0	2.4				0.22	0.20		_	_	_	_	
	2	6		φ 10	_	φ8	_				2.9	3.5		21	25				_	_	_	_	
	2.8			φ 12.5	_	φ9	φ9		8.4	10	4.1	4.9	4	21	25	0.5	0.6						
	3			φ 12.5	_	φ9	φ9				4.4	5.3						4	21	25	0.5	0.6	
	5		12	_	φ 11.2	φ 11.2	φ 11.2	6×Fi(29) B class	6.7	8	6.2	7.5				0.85	1.0	4					
S	7.5	8		_	φ 14	φ 14	φ 14	JIS G 3525	5.8	7	8.3	10				0.03	1.0				0.85	1.0	
	10			_	φ 16	φ 16	φ 16		5	6	10	12		12	15	1.5	1.8				0.85	1.0	4
	15			_	φ 20	_	φ 20		3					12		0.85 × 2	1.0 × 2				1.5	1.8	
	20	_		_	φ 22.4	_	φ 22.4		4.2	5						1.5 × 2	1.8 × 2		15	18			
	30	_		_	_	_	φ 25	IWRC 6×Fi(29) B class JISG 3525	2.8	3.3	17	20	6								1.5 × 2	1.8 × 2	
	40	6.5	_ 11.5	_	_	_	ø 22.4 (8falls) ⊛1	6×Fi(29) B class JIS G 3525	2.1	2.5				-	_	-	-	-			0.75 ×	0.75 ×	
	45	=	12.5 19	=		_	ø 25 (6falls) ⊛1	IWRC 6×Fi(29) B class JISG 3525	1.8	2.2											4	4	
	60 *2	_	_	_	_	_	_	_	1.4	1.65				_	_	_	_	_	_	_	_	_	_

- ¾1 40t has 8falls and 45t has 6falls.(Regarding 60t, please inquire sepately)
- ※2 Please contact us for 60t separatly
- ※3 Rope specification of 1t 2falls is 6×Fi(29)

(4	00V class is also available)3-pha	ase 400v 50/60Hz control 200V,	440V 60Hz control 220V											
	3-phase 380V 50Hz control 48V (100V and 24V are also available)													
	• Operating method······Push button switch operations													
		1/2~3t	5~45t											

	1/2~3t	5∼45t
Suspended type	2 Points	4 Points
Frame mounted type	UD	ON OFF U D
Motor operated traversing hoist	6 Points	8 Points
Wotor operated traversing hoist	UDEWSN	ON OFF U D E W S N

- ■Rating…30 min.(JIS C 9620)
 - ●Power supply system···Both trolley feeding and cable feeding are available. However, neiter trolley nor cable is attached.
 - Enclosure ··· Conforming to JIS C 4004 drip-proof type(simplified outdoor type)

●Power supply······3-phase 200V 50/60Hz control 200V, 220V 60Hz control 220V

- Applicable standard ··· JIS C 9620 electric hoist/crane structure standard
- ●Color coating… Main body:Metallic gray(Equivalent to Munsell N4.0)

Hook block:Munsell7.5YR7/14 Pushbutton: Equivalent to Munsell 7.5 YR7/13

- Ambient air temperature ··· · · 10 °C to 40 °C (Non congelation)
- Ambient air humidity…90% or less(Non condensing)

Standard specifications

device,

Emergency brake

1t~60t optional equipment

Monorail Type (1/2t·1t·2.8t·3t·5t)

Monorail Type (7.5t·10t·15t·20t)

(Shape of S-1/2-HM)

Note: In the case of trolley electric supply type, balance weight is required.

S-1.2.2.8.3

								S-1	1/2								S-1					S-2			S-	2.8	(3)	Г	S-	5
	Mod	del			LN	M2		Ť	_		н	M2			1	.M2	Ť	НМ	12	L	M2	Ť	НМ	12	LM3	Ť	НМЗ	LN		HM3
	Сар).(t)						1/	2								1					2			2	2.8 (3)		- 5	
	Lift((m)			(6					1	2				6	Т	12			6	Т	12		6		12	8	3	12
		Α			28	87					45	57			2	287		47	4	3	22		479	9	341		510	64	16	771
		В			43	33					47	73			5	18		55	1	5	63		590	3	610		641	83	30	955
		С						32	24								345					383				408	3		41	0
		E1			3	38					10	00					100					105				105	5		22	in
Ι,	. 1	E2			5	8					10	00					100					105				105	5		2.0	.0
	ime	F1			7	70					14	40					140					135				135	5		-	-
	insic	F2			12	20					14	40					140					135				135	5		-	-
}	Dimensions(mm)	K															167					210				216	3		26	5
	∄	N			62	25					63	35					735					875				104	5		99	6
`	-	O 73									8	0					80					114				114	1		12	5
		P 6000									120	000			6	000		120	00	6	000		120	00	6000		12000	80	00	12000
		R			45	55					50)5					545					632				720)		76	6
		S				50					9	3				71		10	5		58		10	1	60		97		-	-
		Т			5	8					12	23				42		11	9		49		11:	3	47		115		-	
_		irvature(m)			1.2 ()				1.8 (8 (7.					3 (5.				2.0			5.	
-	Weigl				1	15					13	35			1	165		180)	2	80	\perp	30	5	375		410	56		630
		weight(kg)		_	_	_	_	4.	.5	_	_	_	_	_	_		7.5		_	Ь,	_	15		_		27		<u> </u>	4:	
\vdash		related dimensions D H J Q U V D H						J	Q	U	٧	D	Н	J	Q	U	D	Н	J	Q	U	DH	J	Q U	D	H J	Q U			
1 1		×75×5.5 364 30 27 100 75 222 3 ×100×7 376 54 26 101 125 271 3													360				105			_				_			-	
B.		100×7	376	54	26	101	1 125	_	372	48	33			283		48	33					_		140		_		_	-	
1 SE	_	125×7.5							385	74	31	142	203	331	385	74	31	142	203	$\overline{}$	64	39		_	465 64	34	169 188	1		
1 00 1		150×8																		\rightarrow			170	_		_				
[흙		150×11.5	-																	478	90	29	179	228	478 90	24	179 228	_	72 3	
1-1		175×13	-			_																						524	96 2	7 193 365
1 1	1600×	190×13	1		-	_					-	-			1		_													

Note.rad.cur()at I-Beam •S-1/2,S-1···150×75×5.5 •S-2···200×100×7 Note Applicable I-Beam ==Standard ==required special attachment

S-7.5 · 10

S-15 · 20

					S-	7.5					S-	10					S-	15					S-	-20		
	Мо	del		LM			НМ			LM		· •	НМ			LM		<u> </u>	НМ				_	IM		
	Car	p.(t)			7	.5					1	0					1	5						20		
	Lift	(m)		8		Ī	12			8			12			8		Ī	12				1	12		
		A		669			794			719			844			799			949				99	99		
		В		1004			1129			959			1084			1085			1235				12	235		
		С			4	58					49	93					5	58					5	83		
=	2	E1			31	00					32	28					31	00					3:	28		
Dimensions(mm)		E2			2	70					29	96					2	70					29	96		
Sion		E3			-	-					-	-				620			800				80	00		
l sin		К			3	14					32	23					-						-	=		
3	1	N			12	70					14	50					19	30					20	90		
	l	0			11	73					19	93					1	73					19	93		
		Р		8000			12000)		8000			12000			8000			12000)			120	000		
		R			91	03					98	38					12	:68					13	398		
Min.r	ad.cu	ırvature(m)			5	.0					5	.0					Straiç	ght l ine					Straig	ght l ine		
٧	Neigh	ht(kg)		850			920			1200			1300			2100			2250				26	00		
Hook	block	weight(kg)			8	0					10	00					19	90					2	80		
I-Beam	n relate	d dimensions							D	Н	J	Q	U	٧	D	Н	J	Q	U	V	D	Н	J	Q	U	V
8 4	100×	150×12.5	578	254	181	604	54	49	279	141	241			-						-						
Agricate Rear(m	150×	175×13	590	85	49	254	117	181	616	78	49	279	141	241	590	85	49	254	117	416	616	81	49	279	141	521
∄ 6	300X	190×13	598	100	50	253	116	182	624	94	50	278	140	242	598	100	50	253	116	417	624	96	50	278	140	522

Low-head Type

Low-head Type

S-1/2 · 1 · 2 · 2.8 · 3

S-5

(Shapes of S-2.8t and 3t)

	Mo	alal		٥.	1/2-L	Do				S-1					S-2				S-2	2.8(;	3)				S-5		
	IVIO	aeı		3-	1/2-L	02		- 1	LD2		HD:	2	- 1	LD2		HD:	2	ı	_D3		HD:	3	- 1	_D3		HD:	3
	Ca	p.(t)			1/2					1					2				2.	8 (3))				5		
	Lift	(m)			6				6		12			6		12			6		12			8		12	
		Α			407				429		597	7		427		605	5		440		590	1		646		771	
		В			528				616		784	1		668		847	7		711		861			830		955	;
		С			371					423			473			490						513					
		D			272					356			467			558				542							
	₽i	E1			58			100				105				105							110				
	iens	E2			38					100			105				105						110				
	sion .	F1			120					140			135						175					185			
	Dimensions(mm)	F2			70			140				135				175					175						
	j N 345				410				505			535					650										
		0	73					80						114			114						125				
		P	6000					6000 12000			6	000		1200	00	6	000		1200	0	8	000		1200	0		
		R	400					495			588					643					676						
		Т			66			58			95					108					115						
Mir	n.rad.cu	rvature(m)		1	.2 (4.0))			1	.8 (7.0	0)		1.8 (5.0)					2.0					6.3				
	Weigl				130				195		205	5	295 330			390 425				570 640			1				
_		weight(kg)			5.5					8					15			<u> </u>		25					42		
HB	eam relate	ed dimensions	G	Н	J	Q	U	G	Н	J	Q	U	G	Н	J	Q	U	G	Н	J	Q	U	G	Н	J	Q	U
	_	75×5 . 5	364	30	19	101	75	360	24	21	140	105			_					_					_		
Appl	_	100×7	376	54	20	101	125	372	48	21	140	155	453	40	26	167	140			-					_		
a a e	_	125×7.5						385	74	19	142	203	465	64	24	169	188	465	64	26	169	188			_		
8	-	150×8											478	90	23	170	237			-					_		
Applicable I-Beam(mm)	-	150×11.5			_								478	90	14	179	228	478	90	16	179	228	512	72	31	_	219
(E	-	175×13			_																		524	96	27	193	365
	600×	190×13			_					_																	

Note.rad.cur()at I-Beam •S-1/2,S-1···150×75×5.5 •S-2···200×100×7 Note Applicable I-Beam ==Standard ===required special attachment

S-7.5 · 10

				S-7.5					S-10				
Me	odel		LD		HD			LD		HD			
Ca	p.(t)			7.5					10				
Lif	t(m)		8		12			8		12			
	Α		669		794			719		844			
	В		1004		1129			959		1084			
	С			536			619						
탉	D			601					689				
lens	E1/E2			150/150					528/162				
Dimensions(mm)	F1/F2			265/265			604/164						
l ŝ	N			880			990						
3	0			173					193				
	Р		8000		12000			8000		12000			
	R			741			873						
	T			86			363						
	urvature(m)			Straight line			Straight line						
	ght(kg)		950		1020			1500		1600			
	k weight(kg)			80					100				
	ed dimensions	G	Н	J	Q	U	G	Н	J	Q	U		
	×175×13 2rai l s	678	257	49	254	109	711	253	49	279	141		
Beam(mm)	×190×13 2rai l s	693	288	50	253	108	726	284	50	278	140		

Note Applicable I-Beem =Standard

Double rail Type

(2.8t·3t·5t)

S-2.8 · 3

S-5

1.4	ode l	S-2.8	3(3)	s	-5			
IVIC	odei	LR3A	HR3A	LR3A	HR3A			
Ca	p.(t)	2.8	(3)		5			
Lift	t(m)	6	12	8	12			
	Α	440	590	646	771			
	В	711	861	830	955			
	С	650	950	900	1150			
	E	68	30	680				
	F	12	25	167				
	G	7	5	88				
	Н	46	88	517				
Dimensions(mm)	- 1	60)5	418				
	J	41	0	54	41			
nen	N	34	15	34	16			
sion	0	5	2	12	25			
ıs(m	Р	6000	12000	8000	12000			
∄	Q	7	5	129				
	R	6	3	6	65			
	S	3	5	4	0			
	Т	4	3	3	0			
	V	135	130	97	100			
	W	453	753	590	840			
	Х	15	50	15	50			
	Y	17			75			
	Z	4			5			
	ht(kg)	425	475	660	740			
	weight(kg)	2	-		2			
pplicable	I-Beam(mm)		12kg rai l s or 38m	m steel square bar	8			

Double rail Type

(7.5t · 10t · 15t · 20t · 30t)

S-7.5 · 10 · 15 · 20

S-30

This member is for the traverse gear case protection. (There is no obstacle even if it detaches it after the installation.)

				Length between r	opes (Lower limit)				
Mo	dol	S-	7.5	S-	10	S-	15	S-20-HR	S-30-HR
IVIO	uei	LR	HR	LR	HR	LR	HR	5-20-HH	5-30-mh
Cap	o.(t)	7.	.5	1	0	1	5	20	30
Lift	(m)	8	12	8	12	8	12	12	12
	Α	669	794	719	844	799	949	999	1209
	В	1004	1129	959	1084	1085	1235	1235	1285
	С	950	1200	950	1200	1000	1300	1300	1400
	E	76	50	8-	40	10	000	1045	1190
	F	17	70	1	70	2	20	220	220
	G	22	23	2:	33	2	43	248	246
	Н	57	70	6	13	7	60	790	850
	I	58	33	6	30	7	03	723	806
밁	J	54	43	5-	43	7-	43	748	763
Dimensions(mm)	N	63	30	7	10	8	60	910	1020
sion	0	4	0	3	38	3	80	32	15
l (in	Р	8000	12000	8000	12000	8000	12000	12000	12000
∄	Q	7	5	3	80	8	15	120	115
	R	7	7	8	32	8	34	84	89
	S	4	5	5	55	5	5	55	45
	T	5	0	5	3	7	0	70	80
	V	105	80	100	100	110	135	125	150
	W	660	910	620	870	660	960	945	990
	Х	19	90	19	90	2	50	250	250
	Υ	22	25	2:	25	2	85	285	285
	Z	5	2	5	52	5	8	58	73
Weig	ht(kg)	900	980	1250	1360	1900	2100	2500	3600
Hook block	0 . 0	8	*		00		90	280	380
Applicable I	-Beam(mm)	-	15kg rai l s or 44mn	n steel square bars	s	22kg rail	s or 50mm stee l so	quare bars	37kg rails or 65mm steel square bars

Double rail Type

(45t)

S-40

Mo	del	S-	40
IVIC	uei	LR	HR
Ca	p.(t)	4	0
Lift	(m)	6.5	11.5
	Α	1399	1749
	В	1515	1865
	С	1700	2400
	D	18	74
	F	28	37
무	G	28	37
Dimensions(mm)	Н	68	31
sior	- 1	61	9
l s(m	J	93	30
Ē	N	11	10
	Р	7500	12500
	T	8	1
	Х	41	9
	Υ	35	50
	Z	7	5
Weig	ht(kg)	4800	5300
Hook block	weight(kg)	75	50
Applicable I	l-Beam(mm)	37kg rails or 65mn	n steel square bars

Me	odel	S-	45						
IVIC	Jue!	HR	HR						
Ca	p.(t)	4	5						
Lift	t(m)	12.5	19.0						
	Α	1490	1840						
	В	1565	1915						
	С	1780	2480						
	D	21	2114						
	F	52	20						
말	G	38	50						
nen	Н	807							
sior	- 1	6	70						
Dimensions(mm)	J	11	25						
_ ∄	N	14	50						
	P	11000	16000						
	Т	60	37						
	X	4	19						
	Υ	38	50						
	Z	7	5						
Weig	ht(kg)	6000	6500						
Hook block	weight(kg)	73	30						
Applicable	I-Beam(mm)	37kg rails or 65mn	n steel square bars						

(Shape of 5t)

HS2

121/84

151/114

7.5

The range of length for bolts(on the side of hoisting gearbox)used on the side of the case must be from M24-70 to 100.

LS2

HS2

141/109

178/145

S-1 · 2 · 28 · 3 · 5

4- φ 19 Lug-holes

Model

Cap.(t)

Lift(m)

В

Е

F

G1/G2

H1/H2

М

N

Χ

Weight(kg)

LS2

Center of frame

S-2.8(3)

2.8(3)

170/130

210/170

HS3

LS3

Center of hook

S-5

175/145

220/190

LS3

S-7.5 · 10 · 15 · 20 · 30

HS3	
12	
771	
955	
1100	
1170	
12000	
580	

Мо	del		7.5		10	-	15	S-20-HS	S-30-HS
		LS	HS	LS	HS	LS	HS		30 12 1209 1285 713 1380 1480 200 620 770 12 385 435 960 54 12000 49 320
Cap			7.5	10			5	20	
Lift		8	12	8	12	8	12	12	
	Α	669	794	719	844	799	949	999	
	В	1004	1129	959 1084		1085 1235		1235	1285
	С	4	93	50	31	6	33	663	713
	D	920	1170	920	1170	960	960 1260		1380
	E	1010	1260	1010	1260	1080 1380		1380	1480
Dimensions(mm)	F	1	40	15	50	11	70	170	200
	G	3	70	37	70	50	00	500	620
	Н	4	70	49	90	6	30	640	770
	J		2	1	2	:	2	12	12
isne	K	2	15	24	45	25	95	320	385
ons	L	2	90	3.	10	3	70	395	435
3	М	2	15	24	15	25	95	320	355
2	N	5	80	67	70	8	10	870	960
	0	3	35	3	5	4	7	47	54
	Р	8000	12000	8000	12000	8000	12000	12000	12000
	R	1	00	12	20	10	30	140	150
	U	3	31	3	5	4	1	41	49
	Х	1	88	2.	18	2	75	308	320
	Υ	1	52	22	20	2:	20	220	220
	Z		50	5	3	7	0	70	80
Weig	nt(kg)	650	720	1000	1100	1400	1550	1900	3200
	weight(kg)		30	1000		190		280	380

Suspended Type (7.5t · 10t · 15t · 20t)

S-1/2 · 1 · 2 · 2.8 · 3 · 5

M	odel	S-	1/2	S	5-1	8	3-2	S-2	.8 (3)	S	-5
IVIC	Juei	LK2	HK2	LK2	HK2	LK2	HK2	LK3	HK3	LK3	HK3
Ca	ıp.(t)	1	/2		1		2	2.8	(3)		5
Lif	t(m)	6	12	6	12	6	12	6	12	8	12
	Α	287	457	287	474	322	479	341	510	646	771
	В	433	473	518	551	563	593	610	641	830 955	
	С	3	24	3	45	383		408		4	10
	E	170	230	230		230		230		290	
	F	28	33	33			38	4	13	60	61
	G	140	117	117		151		1	76	2:	29
	Н	1	155		160		177		215		25
	ı	75	78	63		67		8	30	105 106	
밁	J	18		4	17		59	1	27	14	45
nen	K	151		1	67	1	90	2	16	23	36
Dimensions(mm)	L	283	493	298	518	323	508	323	523	725	975
ıs(m	M	32	42	34	67	47	75	46	77	217	342
∄	N	5	70	670		800		965		905	
	0	20	24	2	24	33		33		38	
	Р	6000	12000	6000	12000	6000	12000	6000	12000	8000	12000
	R	328	333	3	73	4	25	5	18	5-	46
	S	50	93	71	105	58	101	60	97	-	-
	T	58	123	42	119	49	113	47	115	-	-
	Х	8	37	1	07	1	40	1	72	20	05
	Υ	8	35	1	05	1	50	1	50	206	
	Z	2	20	3	36		30	3	30	3	0
Weig	ht(kg)	90	105	135	150	220	245	310	345	510	580
look block	k weight(kg)	4	.5	7	.5		15	2	27	4	2

Hook block weight[(g)] 4.5 | 1.5 | 1.5 |

Note:In the case of S-1/2, the position of pendent push button is on the side of hoisting deceleration section.

For 15t and 20t. apply above figure.

	odel	S-1	7.5	S-	10	S-	15	S-20-HK
I	odei	LK	HK	LK	HK	LK	HK	S-20-HK
Ca	p.(t)	7	.5	1	0	1	5	20
Lif	t(m)	8	12	8	12	8	12	12
	Α	669	794	719	844	799	949	999
	В	1004	1129	959	1084	1085	1235	1235
	С	45	58	49	93	5	58	583
	E	30	00	32	20	620	800	800
	F	5	5	6	0	8	10	100
	G	25	52	25	52	2:	25	225
۱.,	Н	25	55	29	90	31	65	410
l iii	1	12	20	12	20	1	78	217
insi.	J	7	7	10	32	10	67	237
ons	K	2	15	24	45	2:	95	320
Dimensions(mm)	L	796	1046	786	1036	831	1131	1131
	M	44	10	46	60	-	-	1
	N	11	65	13	80	16	i80	1800
	0	4	7	5	3	7	'8	103
	Р	8000	12000	8000	12000	8000	12000	12000
	R	60	00	66	60	8-	45	935
	Х	18	38	2	18	2	75	308
	Υ	15	52	22	20	2:	20	220
Weig	ht(kg)	650	720	1000	1100	1400	1550	1900
Hook block	weight(kg)	8	0	10	00	19	90	280

Type Series Inverter hoist 1t~2.8t

Inverter technology and creep speed technology are combined to make a variable speed hoist for twenty-first century.

Moving pattern by push button operation

Excellent Operativeness

●Improvement of maintenance

Effect of conservation of energy

Excellent cost performance

400V class debut

■The inside of Control box

Operation image of inverter hoist

The new control system which combines Inverter operation and contactor operation for the first time in the industry realises smooth operativeness and guick response of stop and speed reduction. In addition, low hoisting speed can be selected from 3 speed types. In the case of hoist with traversing inverter, high speed can be selected from 4 speed types and low speed can be selected from 2 speed types. In comparison with the conventional creep type, the setting range is wider.

Since its structure part is the same as general purpose hoist, the number of parts decreased significantly compared with the conventional creep type. And the maintenance is easy as its control parts are made into one board.

As UR type does not use a regenerative resistor, it is more power saving compared to U type. The durability of its brake disk becomes

about double in comparison with that of the conventional creep type.

Features(comparison w	Features(comparison with the U series, conventional creep type hoist)													
Item	UR series	Conventional creep type	U series											
Control system (Lifting/Lowering)	Inverter and contactor operation Lifting(both low and high speed): Inverter control Lowering at low speed:Inverter control Lowering at high speed:contactor operation	contactor operation Change two motors with clutch	Inverter											
Control system(Traversing)	Inverter	Pole change or two motors	Inverter											
Speed setting (Lifting/Lowering)	High speed: Fixed(Normal speed) Low speed: select from 1/10, 1/6, 1/4 of high speed	High speed:Fixed(Normal speed) Low speed: Fixed (1/10 of Normal speed)	Setting is possible at arbitrary speed with high speed, the low speed between 1/10 of normal speed - nomal speed											
Speed setting(Traversing)	High speed: select from 25, 20, 15, 10m/min Low speed: select from 2.5, 5/min	High speed: Fixed Low speed: Fixed *Speed ratio 1:1/4 or 1:1/5	Setting is possible at arbitrary speed with high speed, the low speed between 1/10 of normal speed - nomal speed											
Respons for the operation	Slow start, Sudden stop [®]	Sudden start, Sudden stop	Slow start, Slow stop											
Operative cost	Medium	High	Low											
Power consumption	Low	Low	Medium											
Number of parts	Sma ll	Large	Medium											

^{*}At lifting, it stops as the cushion working, and At lowring, it stops by sudden deceleration

Specifica	Specifications																
					,	Wire ro	ре		Hois	ting			Tra	aversin	g		
		١,	_	Moi	Low	Double	Rope	Hois	tina	Мо	otor	Speed	(m/min))	Motor		
Туре	Capacity(t) Type		= i#(m)	Monorail type	Low head type	ble rail type	pe specification	speed (m/min)		Output	Poles	Contactor operation	INV opration		Output (kW)	Output (kW)	Poles
		Low	High	2 falls	4 falls	4 falls	cation	Low	High speed	(kW)	S	50Hz	Low	High speed	50Hz	60Hz (INV)	SS
	1			φ8 ※2	φ 6.3	_	6×W(19) B class JIS-G3525	0.8 1.3 2	8 (6.7)	1.4				₩1	0.22	0.26	
UR	2	6	12	φ 10	φ8	_	6×Fi(29)	**1 0.72	7.2	2.6	4	21	*1 2.5 5	25 20 15	0.5	0.6	4
	3			φ 12.5	φ9	φ9	B class JIS-G3525	1.1 1.8	(6)	3.8				10	0.5	0.0	

^{¾1. Selectable from the speed types} () = Lowering speed at 50Hz

●Power supply···3-phase 200V 50/60Hz control 200V, 220V 60Hz control 220V (400V class is also available)...3-phase 400V 50/60Hz control 200V, 440V 60Hz control 220V 3-phase 380V 50Hz control 48V(100V and 24V are also available)

●Operating method···Push button switch operations.

	1/2~3t
Suspended type	2 Points
Frame mounted type	UD
Motor operated traversing hoist	6 Points
Wotor operated traversing noist	UDEWSN

Standard specifications

- *Above push buttons are all 2 step push buttons excluding "ON" and "OFF"
- Applicable standard ··· JISC9620 Electric Hoist, Crane structure standard
- Rating…Hoisting:25% ED(63% of rating load), 150S/Hr JISC9620, Travelling:30 min, JISC9620
- ●Power supply system···Cable feeding, Trolley feeding (limited to Double trolley type)
- ●Ambient air temperature···-10°C ~40°C (Non congelation)
- Ambient relative humidity…Less than 90% RH (Non condensing)
- ●Enclosure···Simplified outdoor type(JISC 0920, Equivalent to IP44)
 - (Rainproof cover is required, when it is used in the open air.)
- ●Color coating···Main body:Metallic gray (Equevalent to Munsell N4.0)

Hook block:Munsell 7.5YR7/14

Pushbutton: Equivalent to Munsell 7.5YR7/13

Note: These hoists can not be used for lift (elevator for passengers.)

caution

- High lowering is contactor operation, speed is 6m/min in 1t and 6.7m/min in 2t 2.8t for the power supply of 50Hz.
- Remarks Lifting low speed is set to 1/10 of high-speed at shipment.
 - · High speed traversing/low speed traversing is set to 25/2.5m/min at shipment.

UR Series are not possible to use for the lift.

- When the winding creep is done, it is not possible to operate smoothly by the traversing resistance. Please contact us.
- · We recommend the installation of the noise filter because it might mis-operate in the point where a lot of power supply noises exist.
- Please contact us when you use the product in a lot of places such as the causticity gas and dust that are.
- Speed range of lifting and lowering in low speed is $\pm 40\%$ of the display value in the ratings load. The speed difference between much load and no load grows at the time of a low speed operating, too,

^{※2.} Rope specification of 1t 2falls is 6 × Fi(29)

Note 1: The values in the table are referential values

Note 2: In the case of 400V class (Including 380V), there may be differences in outline dimension. Please contact us

Sp	ecifi	catic	ns																		
				Wire	rope			Н	oistin	a					Т	rave	rsing				
												Mor	no-rail	·Low	hear	oom		Dou	ıble-r	ail	
	C ₂	בווי(ווו)	i#(m)	Mor	Doub Low	Rope			ı	Motor				1	Motor				N	Иotor	
Туре	Capacity(t)			Monorail type	Double rail type Low head type	Rope specification	Spe (m/i	ed min)	Out (k	put W)	Poles	Spe (m/	eed min)	Outp (kV		Poles	Spe (m/	eed min)	Out (k	put W)	Poles
		Low	High	2 falls	4 falls		50 Hz	60 Hz	50 Hz	60 Hz	37	50 Hz	60 Hz	50 Hz	60 Hz	3	50 Hz	60 Hz	50 Hz	60 Hz	3
	1			φ8 **1	φ 6.3	6×W(19) B class JIS-G3525	6.7	8	1.2	1.4				0.22	0.26		-	_	_	-	_
R	2	6	12	φ 10	φ8	6×Fi(29) B class	6	7.2	2.2	2.6	4	21	25	0.5	0.0	4	_	_	_	_	
	2.8			φ 12.5	<i>φ</i> 9	JIS-G3525	0	1.2	3	3.6				0.5	0.6		21	25	0.5	0.6	4

Note 1: High lift models (Low-head type1~2.8t,Double rail type2.8t)are not available.

●Power supply…3-phase 200V 50/60Hz control 200V, 220V 60Hz control 220V (400V class is also available)…3-Phase 400V 50/60Hz control 200V, 440V 60Hz control 220V 3-Phase 380V 50Hz control 48V (100V and 24V are also abailable)

●Operating method···Push button switch operations.

	1/2~3t
Suspended type	2 Points
Frame mounted type	U D
Motor operated traversing hoist	6 Points
Motor operated traversing hoist	UDEWSN

Standard specifications

- ●Rating…30 min. (JIS C 9620)
- Power supply system···Both trolley feeding and cable feeding are available. Howeve, neither trolley nor cable is attached.
- ●Enclosure···Simplified outdoor type(JISC 0920, Equivalent to IP44)

(Rainproof cover is required, when it is used in the open air.)

● Applicable standard····JIS C 9620 electric hoist/crane structure standard

●Color coating··· Main body:Metallic gray (Equivalent to MunsellN4.0)

Hook block:Munsell 7.5YR7/14

Pushbutton:Equivalent to Munsell 7.5YR7/14

● Ambient air temperature ···· 10°C to 40°C (Non congelation)

● Ambient relative humidity…90% or less (Non condensing)

Note:These hoists cannot be used for lift (elevator for passengers.)

Monorail Type (1t·2t·2.8t) **UR type···Contact us for 400V class outline

	Мо	del	UR-	1-LMH3 1-LMS3		UR-1-H UR-1-H	MS3	UR-	2-LMH3 2-LMS3 2-LM3		UR-2-H UR-2-H	MS3	UR-	2.8-LMF 2.8-LMS 2.8-LM2	32	UR-2.8-I UR-2.8-I R-2.8-I	HMS2
Cap.(t)			R-1-LM3 R-1-HM3				R-2-LM3 R-2-HM3				2.8				HIVI2		
	Lift		6 12				6		12		6			12			
			283		489)		284		485	,		343		558	3	
		В		468		507	7		532		566	i		565		610)
		С			347					368					393		
		E			200					210					210		
	Din	F1		105		170)		115		205	,		115		205	5
	Dimensions(mm)	F2		120		170)		115		165			115		165	5
	sion	K			182					210					210		
	S(n	N			730		840					980					
	₫.	O1/O2			80/72					114/96	;				114/9	6	
	Р			6000		1200	00		6000		1200	10		6000		1200	00
		R			535					585					649		
		S		76		117	7		73		108	}		68		115	5
		Т		49		132	2		47		130			65		150)
	Min.rad.cu	rvature(m)	1.8 (3	.0)/(4.	5)	3.0/[7	'.5)	2.	5/(6)		3.5/[8	.5)	2.	5/(6)		3.5/[8	.5)
	Weig	ht(kg)		150		170)		230		260)		320		360)
	Hook block			7.5					15					27			
	I-Beam relate	d dimensions	ensions D H J Q U			D	Н	J	Q	U	D	Н	J	Q	U		
æ	150×75×5.5		360	24	33	140	105		_	_	_	_	_	_	_	T -	
Applicable	200×100×7		372	48	33	140	155	453	40	31	167	140	_	_	-	T -	_
		385	74	31	142	203	465	64	29	169	188	465	64	24	169	188	
∰ 300×150×11.5								478	90	19	179	228	478	90	14	179	228
🖣	300×150×11.5 450×175×13 600×190×13																
3 600×190×13					_												

Note.1.Min.rad.cur()denotes the case of using below I beam.	2.Applicable I-Beam == Standard	3.Min.rad.cur[]	UR Type with traversing inverter
P. 1. LIP 1150×75×5 5 4 - required special attachment			

Center of travering moter travering moter to tighten bots	Center of travering moter In the case of 11, the side plate will be shaped as shown in the figure left.
---	--

Cap.(t)		Мо	ode l		U	R-1-LDH R-1-LDS R-1-LDS	33		UR-2-LDH3 UR-2-LDS3 R-2-LD3			UR-2.8-LDH2 UR-2.8-LDS2 R-2.8-LD2						
A	1 17			1				2				2.8						
B		1.17				6					6			6				
C 418 465 478 D 343 455 515 E1 100 105 105 E2 1100 105 110 110 F1 105 1110 110 F2 120 175 175 N 405 485 515 O1/O2 80/72 114/96 114/96 P 6000 6000 6000 R 495 572 619 T 58 77 80 Min.rad.curvature(m) 2.0(3.5)/(5) 3.0/(7.5) 3.0/(7.5) Weight(kg) 170 280 350 Hook block weight(kg) 8 15 25 Hear related dimensions G H J Q U G H J Q U G H J Q U G H J Q U G G H J Q U G G H J Q U G G G G G G G G G G G G G G G G G G			Α			426					415			437				
D 343			В			583					656					695		
E1 100 105 105 105 105			С			418					465					478		
O1/O2			D			343					455					515		
O1/O2		닭	E1			100					105					105		
O1/O2		nen:	E2			100					105					105		
O1/O2		ig F1				105					110					110		
O1/O2		(g) F2			120				175				175					
P						405			485									
R 495 572 619		O1/O2				80/72					114/96	i				114/96	i	
T 58 777 80 Min,rad,curvature(m) 2,0 (3,5) / (5) 3,0 / (7.5) 3,0 / (7.5) 3,0 / (7.5)		P				6000					6000					6000		
Min,rad,curvature(m)			R	495						572								
Weight(kg)			Т	58									80					
Hook block weight(kg) 8		Min.rad.cu	ırvature(m)	2.0 (3.5)/[5]				3.0/(7.5)				3.0/(7.5)						
Fear related dimensions G H J Q U G G G G G G G G G		Weig	ht(kg)			170			260						350			
\$\frac{1}{50}\$\frac{1}{50}\$\times \frac{1}{50}\$\times \frac{1}{50}		Hook block weight(kg)				8					15					25		
86 200×100×7 372 48 19 140 155 453 40 23 167 140		I-Beam related dimensions			Н	J	Q	U	G	Н	J	Q	U	G	Н	J	Q	U
200X100X7	Ą	₹ 150×75×5.5			24	19	140	105	_	-	-	_	-	_	-	-	_	_
\$\frac{\circ}{6}\$ \frac{250\circ}{250\circ}\$ \frac{250\circ}{150\circ}\$ \frac{385}{150}\$ \frac{74}{17}\$ \text{142}\$ \text{203}\$ \frac{465}{64}\$ \text{64}\$ \text{21}\$ \text{169}\$ \text{188}\$ \text{465}\$ \text{64}\$ \text{23}\$ \text{169}\$ \text{188}\$ \text{465}\$ \text{64}\$ \text{23}\$ \text{169}\$ \text{188}\$ \text{478}\$ \text{90}\$ \text{11}\$ \text{179}\$ \text{228}\$ \text{478}\$ \text{90}\$ \text{13}\$ \text{179}\$ \text{228}\$ \text{170}\$ \text{180}\$ \text{180}\$ \q	plica	<u>∑</u> 200×100×7		372	48	19	140	155	453	40	23	167	140	_	-	-	_	_
\$\frac{1}{90}\$ 300\times 150\times 11.5 \$ 478 90 11 179 228 478 90 13 179 228 478 90 13 179 228 478 90 13 179 228 478 90 11 179 228 478 90 13 179 228 478 90 11 179 228 478 90 11 179 228 478 90 13 179 228 478 90 11 179 228 478 90 11 179 228 478 90 11 179 228 478 90 13 179 228 478 90 13 179 228 478 90 13 179 228 478 90 13 179 228 478 90 179 228 478 90 11 179 228 478 90 11 179 228 478 90 13 179 228 478 90 13 179 228 478 90 13 179 228 478 90 13 179 228 478 90 13 179 228 478 90 17 179 228 478 90 179 228 478 90 179 278 478 90 179 179 278 478 179 278 478 478 179 278 478 179 278 478 179 278 478 179 278 478 179 278 478 179 278 478 179 278 478 179 278 478 179 278 478 179 278 478 478 478 179 278 4	be	250×125×7.	5	385	74	17	142	203	465	64	21	169	188	465	64	23	169	188
를 450×175×13	Bea	g 300×150×11.5							478 90 11 179 228				228	478	90	13	179	228
	흑	∰ 450×175×13																
□ 600×190×13 — □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	3	600×190×13																

Note.1.Min.rad.cur()denotes the case of using below I beam.

2.Applicable I-Beam = Standard 3.Min.rad.cur[] UR Type with traversing inverter

R-1, UR-1····150×75×5.5 4 = equired special attachment

	Model		UR-2.8-LRH2A UR-2.8-LRS2A R-2.8-LR2A	
	Cap.(t)		2.8	
	Lift(m)		6	
	A	437	К	30
	В	695	L	165
말	С	650	N	233
nen	E	660	P	6000
Sio.	F	175	S	15
Dimensions(mm)	G	110	Т	15
₫	Н	535	X	150
ı		470	Y	175
	J	556	Z	45
Weight(kg)			435	
Hook block weight(kg)			25	
App l icab	le I-Beam(mm)		12kg rails or 38mm steel square bars	:

ı	Mode l	UR-1-LKH3 R-1-LK3	UR-1-HKH3 R-1-HK3	UR-2-LKH3 R-2-LK3	UR-2-HKH3 R-2-HK3	UR-2.8-LKH2 R-2.8-LK2	UR-2.8-HKH2 R-2.8-HK2	
Cap.(t)			1	:	2	2.8		
Lift(m)		6 12		6	12	6 12		
	A	283	489	284	485	343	558	
	В	468	507	532	566	565	610	
	С	3	47	31	ŝ8	3	93	
	E	2	30	2:	30	2	30	
	F	3	33	4	13	4	18	
	G	1	17	1:	51	1	51	
	Н	1	60	1	70	1:	95	
I		7	' 1	8	13	94		
탈	J	4	17	5	7	77		
Dimensions(mm)	К	1	82	1	74	2	00	
sior	L	323	568	326	561	370	630	
ıs(n	M	37	76	48	82	47	92	
<u>j</u>	N	6	65	7	65	910		
	0	2	24	3	33	33		
	Р	6000	12000	6000	12000	6000	12000	
	R	3	63	3	88	4	57	
	S	76	117	73	108	68	115	
	Т	49	132	47	130	65	150	
	X	1	09	1-	41	1	65	
	Y	8	35	10	05	1:	50	
	Z		16	4	1	4	.0	
We	eight(kg)	120	135	170	200	260	300	
Hook blo	ock weight(kg)	7	.5	1	5	2	7	

TIB Inverter control box for saddle motor

Feature

1. Reduction of starting & stopping shock.

 The swing of load and building is reduced by the smooth inverter performance which restrains the shock of starting and stopping.

2. Settable traveling speed for efficient operation

- The optimal operation speed (High and Low speed) can be set in the range from 1/10 to standard speed.
- Inching and plugging operations are possible.

3. Small body and easy installation.

 TIB is equipped with a regenerative resistor unit as a standard equipment, and it can be installed directly to a crane girder with ease.

4. Improved ease of maintenance

- In case a defect occurs, the function that displays failure mode facilitates the judgment of locating fault.
- •The main circuit (noncontact) enhances reliability and improves ease of maintenance.

5. Ehhanced safty functions

 In addition to the conventional functions (over load, the protection of regenerative over voltage), the function of detecting input circuit fault is equipped as a standard.

6. Shared protection board function (TIB-S)

- Circuit breaker box and contactors for on and off (electric power supply) are standard equipment. The box can combine with shared protection board for crane.
- Screw holes are provided for the contactors of light, buzzer and etc.

Type name	and applicabl	e models						
		Appl	olicable Mistsubishi models					
Type	Crane	saddle	Coor motor f	or crane sadle				
	ST, SP series	MT, MP series	Gear motor in	or crane sadie				
TIB-0.8(s)	Output of tra Less than		SGM-0.4A-LK2×2	SGM-0.4A-HK2×2				
TIB-2.2(s)	Output of tra Less than	veling motor 0.75kW×2	SGM-0.75A-LK2×2	SGM-0.75A-HK2×2				
TIB-4.4(s)	Output of traveling motor Less than 2.2kW×2		SGM-1.5A-LK2×2	SGM-1.5A-HK2×2				
110-4.4(5)			SGM-2.2A-LK×2	SGM-2.2A-HK×2				
TIB-7.4(s)	Output of tra Less that	veling motor n 3.7kW×2	SGM-3.7A-LK2×2	SGM-3.7A-LK2×2				

Standard speci	fications	
Power supply		3-phase 200V 50/60Hz, 220V 60Hz ^{※1}
Control system		Inverter control
Speed ratio		The range of settable speed 1/10 \sim standard speed
Operating method		Push button
Operating functions		Inching & plugging operations are possible
Percentage of duty cycl		ED percent 25% ED
per Hr (Allowable freque	ency of usage)	Number of starts per hour 250S/Hr
	Air temperature	-10°C to 40°C (No congelation)
Service condition	Relative humidity	Ambient humidity 90% or less (Non condensation)
	Atmosphere	Non corrosive gas environment, non considerable dust environment
Enclosure		Indoor type (JP20)
Protective functions		Over load, over voltage in regenerative (braking)
Power supply system		Cable feeding
Color coating		Munsell 4.7GY6.06/0.48

^{*1 . 400}V class series(TIB-H(HS)) are also available. Please contact us for further information.

TIB-S TYPE

Туре	NFB for main power	Contactor for main power	Space for Light, Buzzer and contactor
TIB-0.8S	NF50-CP(50A) %NF50-CW(30A)	S-N35	
TIB-2.2S	NF60-SP(60A)	S-N50	Screw holes are provided
TIB-4.4S	NF225-SP(125A)	S-N80	for a couple of S-N11 or S-N21.
TIB-7.4S	NF255-SP(175A) **NF100-CW(100A)	S-N125	

%=400V

Function diagram

Outline drawing

****400V class series (TIB-H(HS))** are also available Contact us for 400V class outline

Outline dimension table (mm)												
Туре	Α	В	С	D	Е	Approx. weight						
TIB-0.8	620	320	226	196	183	14kg						
TIB-2.2	620	220	228	196	204	17kg						
TIB-4.4	000	000	000	000		OFIce						
TIB-7.4	690	220	268	236	211	25kg						

Outline dimension table (mm)												
Туре	Α	A B C D E		Е	Approx. weight							
TIB-0.8S	690	314	268	236	190	16kg						
TIB-2.2S	730	690	333	120	226	20kg						
TIB-4.4S	760	720	473	250	246	45kg						
TIB-7.4S		720	4/3	250	246							

^{**} In the case of 400V, the outline dimension of TIB-0.8 and 0.8S are different from above values. Please contact us.

Geared motor for crane saddle SGM-A

Standard specifications

Power supply: 3-phase 200V 50/60Hz(220V 60Hz is available.)

Enclosure: indoor type

Ambient air temperature : -10°C to 40°C(Non congeration) Ambient air humidity: 90% or less (Non condensing)

Color coating : Metallic glay

note:(1)SGM-3.7A-HK2 are Made-to-order product.

(2)Inertia Moment of permissible load :

Standard type Ten times Inertia Moment of motor (3)Start accumulator such as inverters is necessary for HK type.

Assume the brake circuit to be another power supply when you use inverter.

(Motor part (Deceleration part)

Terminal box

C letterform ring

Output shaft)

Line up and ratings											
		low speed	type	high speed type							
		LK type(stand	ard type)	HK type(standard type)							
Output shaft	50Hz	75		125							
revolving(r/min)	60Hz	90		150							
Energizing	rate		259	6ED	ED						
Capacity	Number of poles	Current(A)50/60Hz	Permissible start f	requency	Inertia Moment of motor(kg/m²)						
0.4 KW		3.0/2.4	150		0.0015						
0.75KW		4.5/3.8	120 120 100		0.0025						
1.5 KW	4P	8.5/7.0			0.0038						
2.2 KW		9.7/9.1			0.0062						
3.7 KW		15.8/15.0	75		0.0159						

* contact us for further information about B type.

0.4~2.2kW Standard type(Low speed type, High speed type)

type Output Poles Key					Dimensions											Weight										
type	(kW)	1 0163	(mm)	а	b	d※1	е	f	Α	В	С	D%2	Е	F	G	Н	1	J	К	(kg)						
SGM-0.4A-LK2,HK2	0.4		10×8 -36	10×8	10×8	10×8	10×8	10	10 8 35	35	30.0	36	466	75	391	140	50	5	15	70	321	39	129	28		
SGM-0.75A-LK2,HK2	0.75			10	l °	35	30.0	.0 36	486	75	411	140	50	5	15	70	341	39	135	34						
SGM-1.5A-LK2,HK2	1.5	"	14×9 -56	14×9	14×9	14×9	14×9	14×9	14×9	14	9	50		56	615.5	100	515.5	160	70	5	20	107.5	408	46	163	63
SGM-2.2A-LK,HK	2.2			14	1 9	50	44.5	.5 56	609	100	509	160	70	5	20	107.5	401.5	46	172	67						

3.7kW Standard Low speed type (Weight:95kg)

SGM-3.7A-LK2 SGM-3.7A-HK2(Made by order)

Recommended allowance of Recommended allowance of #2 is F7(JIS-B0401)

Model selection list

1. Setting of crane saddle: box type, Steel thickness 6mm 3.Do not exceed 25m/min at the running speed when using 2.Inertia Moment of permissible load :

Standard type Ten times Inertia Moment of motor With silicon coupling Seven times Inertia Moment

N:Output shaft revolving(r/min)

standard type without start accumulator such as inverters. 4.Selection example

SGM-1.5A type(standard type) corresponds for 5t, 20m interval, 25m/min runnning speed, and to Osign in a lower

Adjustment with crane saddle

- (1)Diameter of pinion-Diameter of pinion pitch≥2×Diameter of output shaft
- (2)Point of gaining weight. Center of width of pinion
- (3)Permissible overhang···Load P(kg)

type	LK	HK
SGM-0.4A	150	90
SGM-0.75A	290	160
SGM-1.5A	400	230
SGM-2.2A	580	340
SGM-3.7A	900	540

(1) Avoid the collision of the saddle to the stopper as much as possible, and install the buffer in the saddle.

(2)Contact us for further information about use excluding general factory like explosion-proof environment etc.

Over load detection device LCV-B

"Weight Checker"(detection of current)

It prevent and secure safety of the hoist overload work.

And it can raise an alarm in case of the overload, stop hoisting motor by detecting the current value of motor.

	Type				LCV-30B							
	Corresponded hoist(t) (S Type)		1/2	1	2	2.8	5	7.5	10	15	20	30
	Hoisting motor (kW)	50Hz	1.0	2.0	2.9	4.1	6.2	8.3	10	17	17	17
		60Hz	1.2	2.9	3.5	4.9	7.5	10	12	20	20	20

L	Jser Crane man	ufacturer Deal	ler Agency	Bran	nch office	T dotory 7 toooptarioo						
() () () () ()							
Ag	Agency(Person in charge:) Mitsubishi(Person in charge: Approval:)											
Mi	Mitsubishi hoist Procurement specification (Sub-No) Creation date:Year Month date											
1	Type/Number of unit/ Request delivery date		/ Un	iit / Year	/ Mo	onth / Date						
2	Date of building construction work /Reasons	Year Month	Date /	Reasor	1							
3	Type of traverse & installation	Suspended	Fram	ne mounted		Motor operated						
4	Power voltage	3 phase V	Hz									
5	Control voltage	Control V <wi< th=""><th>th control transformer • w</th><th>rithout control trans</th><th>sformer (extern</th><th>al supply)></th></wi<>	th control transformer • w	rithout control trans	sformer (extern	al supply)>						
6	Rated capacity					t						
7	Base body capacity		t – m	Base body(It is indi	spensable whe	n the base body changes)						
8	Max Load Lifting height					m						
9	Hoisting speed	Base body standard	specified n	n/min (For Inv hois	t : unload high	speed with without)						
10	Traversing speed	Base body standard	specified n	n/min								
		Monorail Lowhead type	Straight Curve	R = m	nm							
	Traversing rail	Standard (I-beam) Size With taper wheel										
11		Non-standard (Box girder) Size With flat wheel										
		Double rail type	Length between rail 5	Standard Sp	ecial spec C =	: mm						
		Standard Special rai	l kg rail									
12	Push button	Standard (Push button)	Unnecesssary									
13	Number of push button & indication	Standard Request	Points Detail ()						
14	Length of push button cable	Standard Special sp	ec m	(Select from 6 / 8 /	12 / 18 / 20 / 24	4 / 30m)						
15	Protective construction	Standard Rain proof	(Cover type) Corros	ion proof Exp	olosion proofd20	G4						
16	Color coating	Body : Standard Speci	ial spec (), Hook Star	ndard Spec	ial spec ()						
17	Submission of documents	Specifications, Outline dra	wing, Wiring diagram (Jap	panese English)	/ Test report (V	With Without)						
''		Mill sheel : Without	With (Wire rope Hook)	ı								
< S	Special instruction >			DATE	Sub-turn	Revision column						
				Quotation No								
				Factory Order	No							
				, actory Order								

Factory Acceptance