

■Hoist Type (Shapes)

Introduction of Products

Crane related Equipment

Mitsubishi Electric Hoist Catalogue

The Mitsubishi Electric Hoists Applications and Selection Diagram
Basic term ofthe hoist (crane)

The selection of the model
Function code The viewpoint of the catalogue
Production model - 6
Product Oveview - 6
The description of S type series'mechanic
al features
U2•HU2 Type $\quad 9$
S Type
UR•R Type
41
TIB
49
GM-A
51
LCV-B the most suitable hoist type
each customer's condition:

(1) Signs such as A or B grade stand for the application group of the crane structure standard.
2 C grade applied the hoist of S , U2, HU2 series lift more than 12 m .
 please specify the application group.

\square Limit at allowable use freqency consection(\square More than 7.5t, \square Less than 5t)

Operating hour of a day Rate of loading ~ 1 ~ 2 ~ 4	~ 6	~ 8	~ 16	$16 \sim$				
Light	Crane used normaly in under 50\% of the rated load							
Moderate	Crane used normally from 50% to under 63% of the rated load							
Heavy	Crane used normaly from 63% to under 80% of the rated load							
Very heavy	Crane used normaly in more than 80% of the rated load							

Basic term of the hoist (crane)

There are many technical terms in this catalogue and the words that are generally used. The most basic words are explained below.

Host ba
Hoisti
(1) Hoisting load

The maximum load that hoist (crane) can burden ※The load that includes mass of a hook (lifting tod) and rated x The loa
load

(2) Rated Ioad

The load that deducted the mass of a hook and the lifting tool from hoisting load
※We display rating load with capacity.
(3) Lift

Vertical movement distance of the hook
※The standard lift of Mitsubishi hoist

- Low lift $\left\{\begin{array}{l}\text { Less than } 3 t \rightarrow 6 \mathrm{~m}\end{array}\right.$
- High lift 12 m
(4) Hoisting(Lifting)/Lowering

Vertical motion of the load
(5) Traversing

Motion of hoist
(6) Travelling

Motion of crane
※Distance hoist moves (speed) Traversing distance(speed)
*Distance crane moves (speed)......Travelling distance(speed)

The selection of the model

At first，select by purpose of use，use condition，frequency of use and decide concrete model by capacity，lift， shape（Suspended Type，Frame mounted Type，with traversing）and hoisting speed next．

（1）Allowable freqency of use

Select the model by the start number of times（the number of times of the up and down operation of the push button），percentage of duty cycle．（Please refer to the hoist applications and seledtion diagram of P3．）

（2）Capacity

S series，U2 series：1／2－60t，HU2 series：10t－60t R series，UR series：1t－2．8t
（3）Lif
We have Low lift type and High lift type．As for the low lift， 6 m （more than $5 \mathrm{t}, 8 \mathrm{~m}$ ），the high lift is 12 m ．Mos models make both high lift and low lift．

（4）Shape

Suspended Type，Frame mounted Type，Monorail Type，Low－head Type，Double rail Type
※There is some hoist which we don＇t produce by a model，capacity．（Please refer to production overview of P6．）

\square Function code

＂2＂attaches for U－HU type

$$
\begin{aligned}
& \text { "A" atlaches for U(more than } 7.5 t \text {) } \\
& \text { and HU type. }
\end{aligned}
$$

L：Low lift
H：High lift
All hoists with more than
12m become＂ H ＂．）
In the case of special hoists，the following code attaches to the en

Special specifications	Code
With hoisting inverter	H
With hoisting and traversing inverter	S
With traversing inverter（S type，R type）	T
With gear type limit swich	G

Special specifications

Code	Code
With electric limit swich	E
With emergency brake	B
Explosion－proof type	X

The viewpoint of the catalogue

（1）MITSUBISHI Hoist applications and selection diagram，allowable duty cycle and the number of starts per Hr．
The allowable duty cycle and the number of starts per Hr ．are described．Confirm how much frequency you use hoist at，and select the most suitable model
（2）Production Overview Table
You can distinguish a production range according to the production overview table．

（3）Specifications

We describe basic specifications of the hoist．You can identify wire rope size，motor capacity，lifting and traversing speed，current value，in addition，basic specifications．

（4）Outline Drawings

We have outline drawings type－by－type．Minimum head room（N dimentions），general weight，applicable I－Beams are described in it．Please warm being the model that the minimum radius curvatures grows big with the I－Bean of small size by the facia column of the applicable I－Beam

Production model

High speed series＂HU2＂type and Explosion－proof series＂S－X＂type are also available．

Production Overview Table

〈U2〉〈S〉Type

| Capacity（t） | $\begin{array}{c}\text { Motor Operated Traversing }\end{array}$ | | | | Suspended Type |
| :---: | :---: | :---: | :---: | :---: | :---: |\(\left.⿻ \begin{array}{c}Frame mounted

Type\end{array}\right]\)

〈HU2〉 Type

Capacity（t）	Motor Operated Traversing			Suspended Type	Frame mounted Type
	Monorail Type	Low－head Type	Double Rail Type		
	LMHM	LD／HD	LR／HR	LK／HK	LS／HS
10	8m／12m	8m／12m	$8 \mathrm{~m} / 12 \mathrm{~m}$	8m／12m	$8 \mathrm{~m} / 12 \mathrm{~m}$
15	$8 \mathrm{~m} / 12 \mathrm{~m}$	－	8m／12m	8m／12m	8m／12m
20	－／12m	－	－／12m	－／12m	－／12m
30	－	－	－／12m	－	－／12m
40	－	－	6．5m／11．5m	－	6．5m／11．5m
45	－	－	－／12．5m	－	－／12．5m
60	－	－	－	－	9．5m／14．5m

〈UR〉〈R〉Type

Capacity（t）	Motor Operated Traversing			Suspended Type
	Monorail Type	Low－head Type	Double Rail Type	
	LM／HM	LD／HD	LR／HR	LK／HK
1	$6 \mathrm{~m} / 12 \mathrm{~m}$	$6 \mathrm{~m} /$	-	$6 \mathrm{~m} / 12 \mathrm{~m}$
2	$6 \mathrm{~m} / 12 \mathrm{~m}$	$6 \mathrm{~m} /$	-	$6 \mathrm{~m} / 12 \mathrm{~m}$
2.8	$6 \mathrm{~m} / 12 \mathrm{~m}$	$6 \mathrm{~m} / \mathrm{m}$	$6 \mathrm{~m} /$	$6 \mathrm{~m} / 12 \mathrm{~m}$

Control Box, traversing motor and oil gauge are arranged on the same side for ease of maintenance.

Adoption of S type body

- This series is based on the model S , high-performance parent
body which features highest-in-class hoisting speed, power, and
body which features highest-in-class hoisting sp
durability, and withstands repeated operations.

Inverter hoist that develops new use and new field

Standard

Features of U2•HU2 type
Reduction of shock at
starting and stopping This feature reduces the shaking of the hoisting load and the building, facilitating delicate positioning.

Operation patterns changed by the

Operation history display function

Failure history : When a failure occurs, stopping the hoist, this function helps to
display
track down the cause of failure by showing the history of past failures. It helps solve the problem when a failure has occurred. Error history
output Number of occurred are output. starts/loperating
hours display This display shows the hoist's working history. It is also usefu

U2 TYPE application examples

Facator builing with an oftice on the upper
level(The buiding does not shake.)

Options

* Improved ease of use

Synchronous by speed-coordination function Controls tilt of load when hoisted by two or more hoists. Multi-stage speed function
This fucticton is usefult in automatic operations using a se-
quencer; for one of eight-stage inputs for either hoisting or quencer: for one of eight-stage inputs for either hoisting or
lowering a load, the machine can be operated at the de sired speed.
Position detection multi-point output
Using an ELS cirruit board, this function provides ope ration information on how the machine is being used. Rotation signal output sing a BTS circuit board, this function allows a two-ph
signal to be sent to the sequencer or similar devices.

Hoist-specific inverter control panel

*The compactly-designed control panel is also vibration resistant.

* Parameter settings have been simplified, requiring only four buttons.

Attention in use

- The inverter hoist doestht stop the push-butlon of turning off a t once. II tstops as the cushion working, and operat
in
Cunsideration ot the stoping distance, lease

$(1 / 2 t \cdot 1 t \cdot 2.8 t \cdot 3 t \cdot 5 t)$
※Contact us for 400 V class outline

$\mathrm{U} 2-1 \cdot 2 \cdot 2.8 \cdot 3$

Monorail Type
※Contact us for 400 V class outline
U2-7.5A - 10A

U2-15A•20A

Low-head Type

$\mathrm{U} 2-1 / 2 \cdot 1 \cdot 2$

U2-2.8 - 3

Model		U2-1/2					U2-1						U2-2							U2-2.8(3)						U2-5				
				,	LDS		LDH2		LDS2	HD	H2\|	HDS	LDH2 LDS2\|HDH2 HDS2							LDH3 [DS3 ${ }^{\text {\|HDH3 }}$ \| $\mathrm{HDS3}$						LDH3 [LDS3\|HDH3 ${ }^{\text {HDS }}$				
Cap.(t)				1/2			,						2							2.8 (3)						5				
		6						6			12				6			12				6		12		8			12	
	A	433						44			611				457			635				472		62		810				
	B	528						61			784				668			847				71		86		955				
	C	371					423						473							490						513				
	D	272					356						467							558						764				
	E1	58					100						105							105						110				
	E2	38					100						105							105						110				
	F1	120					140						135							175						185				
	F2	70					140						135							175						175				
	N	345					410						505							535						650				
	\bigcirc	73					80						114							114						125				
	P	6000						600			1200		6000 12000							6000 12000						8000 12000				
	R	410					495						588							643						676				
	T	66					58									95				108						115				
$\frac{\text { Min.rad curvature(m) }}{\text { Weight(kg) }}$		1.2 (4.0)					1.8 (7.0)						1.8 (5.0)													6.3				
			150		150			200			215				305			340		405 [440						640 710				
Hook block weight(k)		5.5					2						15							25						42				
1 Brannel	dimenions	G	H	J	Q	u	G		H		Q	u		G	H	J	Q		u		G	H	J	Q	u	G H H J J Q O				
	5×5.5	364	30	19	101	75	360		24	1	140	105	-							-						-				
3 근 200	00×7	376	54	20	101	125	372		482	1	140	155		453	40	26	167		140	-						-				
颜 $250 \times$	25×7.5						385		74	9	142	203		465	64	24	169		188		465	64	26	169		-				
\% ${ }_{\text {¢ }}$	50×8													478	90	23	170	0	237							-				
\% 300	50×11.5			-										478	90	14	179		228							512	72	31	189	219
3 450	75×13	-																									96	27	193	365
600	90×13	-					-																							

U2-7.5•10

[^0]
-17-

Double rail Type
※Contact us for 400 V class outline

U2-7.5A•10A

-18

Suspended Type

$(1 / 2 t \cdot 1 t \cdot 2 t \cdot 2.8 t \cdot 3 t \cdot 5 t)$
※Contact us for 400V class outline U2-1/2•112 2 $2.8 \cdot 3 \cdot 5$

5t Type

Model		U2-1/2		U2-1		U2-2		U2-2.8(3)		U2-5	
		LKH2	HKH2	LKH2	HKH2	LKH2	HKH2	LKH3	НКНз	LKH3	НкНз
		1/2		1		2		2.8 (3)		5	
Litt(m)		6	12	6	12	6	12	6	12	8	12
	A	315	486	321	508	352	509	373	542	685	810
	B	433	473	518	551	577	605	658	689	830	955
	c	324		345		383		408		410	
	E	170	230	230	230	230	230	230	230	290	
	F	28	33	33		38		43		60	61
	G	140	117	117		151		176		229	
	H	155		160		177		215		225	
	1	75	78	63		67		80		105	106
	J	3		12		21		89		114	
	K	151		167		190		216		236	
	L	283	493	298	518	323	508	323	523	725	975
	M	32	42	670		47	75	46	77	217	342
	N	570				800		965		905	
	0	20	24	24		33		33		38	
	P	6000	12000	6000	12000	6000	12000	6000	12000	8000	12000
	R	328	333	373		425		518		546	
	s	50	93	71	105	58	101	60	97		
	T	$58 \quad 87$		42	119	49	113	47	115	-	
	X			107		140		172		205	
	Y	83		105		150		150			
	z	20		36		30		30		30	
	t(kg)	100	110	145	160	${ }^{230} \underbrace{15}$		325 		580 82	
Applicad	Beam(mm)	4.5		7.5							

The pushbutton position of U2-1/2 is positioned on the side of hoisting deceleration part.

Suspended Type

U2-15A - 20A

		. 5		U2-10A				U2-20A-HKH6
		LKH6	НКН6	LKH6	HKH6	LKH6	HKH6	
$\begin{aligned} & \text { Cap.(t) } \\ & \hline \text { Litit(m) } \end{aligned}$		7.5		10		15		20
		8	12	8	12	8	12	12
	A	881	1006	949	1074	1045	1195	1243
	B	1004	1129	959	1084	1085	1235	1235
	c	458		493		558		583
	E	300		320		620	800	800
	F	55		60		80		100
	G	252		252		225		225
	H	255		290		365		410
	I	120		120		178		217
	J	45		100		73		118
	K	497		528		430		455
	L	796	1046	786	1036	831	1131	1131
	M	440		460		-		-
	N	1165		1380		1680		1800
	\bigcirc	47		53		78		103
	P	8000	12000	8000	12000	8000	12000	12000
	R	600		660		845		935
	X	188		218		292 (to resister)		322 (to resister)
	Y	152		220		220		220
		700	770	1050	1150	1500	1650	2000
Applicale	san(mm)	80		100		190		280

$(1 t \cdot 2 t \cdot 2.8 t \cdot 3 t \cdot 5 t)$
※Contact us for 400 V class outline U2-1•2•2.8•3.5

5t Type

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Model}} \& \multicolumn{2}{|c|}{U2-1} \& \multicolumn{2}{|c|}{U2-2} \& \multicolumn{2}{|c|}{U2-2.8(3)} \& \multicolumn{2}{|c|}{U2-5}

\hline \& \& LSH2 \& HSH2 \& LSH2 \& HSH2 \& LSH3 \& HSH3 \& LSH3 \& HSH3

\hline \& \& \multicolumn{2}{|c|}{1} \& \multicolumn{2}{|c|}{2} \& \multicolumn{2}{|c|}{2.8 (3)} \& \multicolumn{2}{|r|}{5}

\hline \multicolumn{2}{|r|}{Litit $(\mathrm{l}$} \& 6 \& 12 \& 6 \& 12 \& 6 \& 12 \& 8 \& 12

\hline \multirow{21}{*}{} \& A \& 321 \& 431 \& 352 \& 445 \& 373 \& 473 \& 685 \& 810

\hline \& B \& 518 \& 628 \& 577 \& 670 \& 658 \& 758 \& 830 \& 955

\hline \& C \& \multicolumn{2}{|c|}{345} \& \multicolumn{2}{|c|}{383} \& \multicolumn{2}{|c|}{408} \& \multicolumn{2}{|c|}{410}

\hline \& D \& 385 \& 605 \& 420 \& 605 \& 430 \& 630 \& 850 \& 1100

\hline \& E \& 435 \& 655 \& 480 \& 665 \& 500 \& 700 \& 920 \& 1170

\hline \& F \& \multicolumn{2}{|c|}{75} \& \multicolumn{2}{|c|}{88} \& \multicolumn{2}{|c|}{99} \& \multicolumn{2}{|c|}{115}

\hline \& G1.G2 \& \multicolumn{2}{|c|}{121/84} \& \multicolumn{2}{|c|}{141/109} \& \multicolumn{2}{|c|}{170/130} \& \multicolumn{2}{|c|}{175/45}

\hline \& $\mathrm{H}_{1} \cdot \mathrm{H}_{2}$ \& \multicolumn{2}{|c|}{151/114} \& \multicolumn{2}{|c|}{178/145} \& \multicolumn{2}{|c|}{210/170} \& \multicolumn{2}{|c|}{220/190}

\hline \& K \& \multicolumn{2}{|c|}{167} \& \multicolumn{2}{|c|}{190} \& \multicolumn{2}{|c|}{216} \& \multicolumn{2}{|c|}{236}

\hline \& L \& \multicolumn{2}{|c|}{180} \& \multicolumn{2}{|c|}{225} \& \multicolumn{2}{|c|}{275} \& \multicolumn{2}{|c|}{260}

\hline \& M \& \multicolumn{2}{|c|}{148} \& \multicolumn{2}{|c|}{157} \& \multicolumn{2}{|c|}{181} \& \multicolumn{2}{|c|}{206}

\hline \& N \& \multicolumn{2}{|c|}{330} \& \multicolumn{2}{|c|}{410} \& \multicolumn{2}{|c|}{490} \& \multicolumn{2}{|c|}{420}

\hline \& 0 \& \multicolumn{2}{|c|}{15} \& \multicolumn{2}{|c|}{19} \& \multicolumn{2}{|c|}{24} \& \multicolumn{2}{|c|}{28}

\hline \& P \& 6000 \& 12000 \& 6000 \& 12000 \& 6000 \& 12000 \& 8000 \& 12000

\hline \& R \& \multicolumn{2}{|c|}{60} \& \multicolumn{2}{|c|}{70} \& \multicolumn{2}{|c|}{80} \& \multicolumn{2}{|c|}{90}

\hline \& s \& 71 \& 182 \& 58 \& 165 \& 60 \& 166 \& \&

\hline \& T \& 42 \& 42 \& 49 \& 49 \& 47 \& 47 \& \multicolumn{2}{|c|}{-}

\hline \& U \& \multicolumn{2}{|l|}{18} \& \multicolumn{2}{|l|}{24} \& \multicolumn{2}{|l|}{27} \& \multicolumn{2}{|c|}{31}

\hline \& x \& \multicolumn{2}{|c|}{107} \& \multicolumn{2}{|c|}{140} \& \multicolumn{2}{|c|}{172} \& \&

\hline \& Y \& \multicolumn{2}{|c|}{105} \& \multicolumn{2}{|c|}{150} \& \multicolumn{2}{|c|}{150} \& \multicolumn{2}{|c|}{206}

\hline \& z \& \multicolumn{2}{|c|}{36} \& \multicolumn{2}{|c|}{30} \& \multicolumn{2}{|c|}{30} \& \multicolumn{2}{|c|}{30}

\hline \& t(kg) \& 125 \& 145 \& \multicolumn{2}{|l|}{\multirow[b]{2}{*}{15}} \& \multicolumn{2}{|l|}{\multirow[b]{2}{*}{${ }_{27}$}} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{580

42}}

\hline Hook bl \& wweight(k) \& \multicolumn{2}{|c|}{7.5} \& \& \& \& \& \&

\hline
\end{tabular}

Model		U2-7.5A		U2-10A		U2-15A		U2-20A-HSH6	U2-30A-HSH6
		LSH6	HSH6	LSH6	HSH6	LSH6	HSH6		
		7.5		10		15		20	30
Litit (l)		8	12	8	12	8	12	12	12
	A	881	1006	949	1074	1045	1195	1243	1456
	B	1004	1129	959	1084	1085	1235	1235	1284
	c	493		531		633		663	713
	D	920	1170	920	1170	960	1260	1260	1380
	E	1010	1260	1010	1260	1080	1380	1380	1480
	F	140		150		170		170	200
	G	370		370		500		500	620
	H	470		490		630		640	770
	K	497		500		458		470	467
	L	290		310		370		395	435
	M	245		265		443		468	522
	N	580		670		810		870	960
	0	35		35		47		47	54
	P	8000	12000	8000	12000	8000	12000	12000	12000
	R	100		120		130		140	150
	U	31		35		41		41	49
	x	188		218		275		308	320
	Y	152		220		220		220	220
	z	50		53		70		70	80
Weight(kg)		700	770	1050	1150	1500	1650	2000	3300
	okweight	80		100		190		280	

Monorail Type (High speed type)
 - -
 (10t)
 Contact us for

HU2-10A

HU2-15A - 20A

Model	HU2-10A						HU2-15A						HU2-20A					
	LMH6		LMS6	нмН		HMS6	LMH		LMS6	нм		HMS6	HMH6			HMS6		
Cap.(t)	10						15						20					
	8			12			8			12			12					
A	949			1074			1045			1195			1243					
B	1055			1180			1205			1355			1355					
c	513						558						583					
0	328						300						328					
震	296						270						296					
总 G							620			800			800					
$\frac{\stackrel{\rightharpoonup}{\vec{~}}}{\stackrel{\rightharpoonup}{7}}$	427						443						455					
$3{ }^{3} \mathrm{~N}$	1450						1930						2090					
-	193						173						193					
P	8000			12000			8000			12000			12000					
R	988						1268						1398					
Min.rad.curature(m)	5.		12.5	${ }^{5.0} 1500$			Straight line						Straight line					
Weight(kg)	1400						2400 \| 2550						3050					
Hook block weight(k)	100						190											
1-Baenrelated diresioiors	D	H	J	Q	U	v	D	H	J	Q	\cup	v	D	H	J	Q	u	v
$400 \times 150 \times 1.5$	604	54	49	279	141	32												
1 A.	617	78	49	279	141	32	590	85	49	254	117	347	616	78	49	279	141	451
$600 \times 100 \times 13$	624	94	50	278	140	33	598	100	50	253	116	348	624	94	50	278	140	452

Frame mounted (High speed type)

(10t-15t-200t-30t)
Contact us for HU2-10A • 15A • 20A - 30A

Model		HU2-10A		HU2-15A		U2-	H2-3
		LSH6	HSH6	LSH6	HSH6	HSH6	HSH6
		10		15		20	30
		8	12	8	12	12	12
	A	949	1074	1045	1195	1243	1456
	B	1055	1180	1205	1355	1355	1405
	C	553		633		663	713
	D	920	1170	960	1260	1260	1380
	E	1010	1260	1080	1380	1380	1480
	F	150		170		170	200
	G	370		500		500	620
	H	490		630		640	770
	K	414		458		470	567
	L	310		370		395	435
	M	443		443		468	522
	N	670		810		870	960
	0	35		47		47	54
	P	8000	12000	8000	12000	12000	12000
	R	120		130		140	150
	U	35		41		41	49
	X	302 (tor resister)	218	$\frac{275}{220}$		308	320
	Y	220				220	220
	z	53		70		70	80
	t(kg)	1200	1300	1700	1850	2200	3500
	weightly	100		190		280	380

Double rail Type(High speed type)
 H_{2}
 (10t•15t $\cdot 20 t \cdot 30 t$)
 Contact us for 400 V class outline

Double rail Type(High speed type)

Model		HU2-10A				HU2-15A					HU2-20A		HU2-30A			
		LRH6	LRS6	HRH6	HRS6	LRH6		LRS6	HRH6	HRS6	HRH6	HRS6	HRH6	HRS6		
Cap.(t)		10				15					20		30			
		8		12		8			12		12		12			
	A	949		1074		1045			1195		1243		1456			
	B	1055		1180		1205			1355		1355		1405			
	c		950	120			1000		130		1300		1400			
	E	840				1000					1045		1190			
	F	170				220							220			
	G	253				243					248		246			
	H	613				760					790		850			
	1	650				703					723		806			
	J	753				813					824		868			
	N	710				860					910		1020			
	0	38				30					32		15			
	P		800	1200			3000		1200				12000			
	Q	30				85							115			
	R	82				84							89			
	s	55				55							4580			
	T	53				70										
	v	100 100				110			135				150			
	w		620	870			660		960				990			
	X	190				250							250			
	Y	225				285							285			
	z	52				58										
Weight(kg)		1450 1560				2200			2400		2800		3900			
$\frac{\text { Hook block weight(kgo }}{\text { Applicade e }}$ (Baan(mm)		15 kg rails or 44mm steel square bars				$\frac{190}{22 \mathrm{~kg} \mathrm{rails} \mathrm{or} 50 \mathrm{~mm} \text { steel squa }}$					${ }^{280}$		${ }_{\text {3ly }} \frac{380}{}$			

$N \pm 100 \quad$ L

Model		U2-40A		HU2-40A		U2-45A		HU2-45A	
		LRH6	HRH6	LRH6	HRH6	HRH6	HRH6	HRH6	HRH6
		40		40		45		45	
Litt(m)		6.5	11.5	6.5	11.5	12.5	19	12.5	19
	A	1525	1875	1525	1875	1740	2090	1740	2090
	B	1515	1865	1635	1985	1565	1915	1685	2035
	C	1700	2400	1700	2400	1780	2480	1780	2480
	D	1874		1874		2114		2114	
	F	287		287		520		520	
	G	287		287		350		350	
	H	681		681		807		807	
	1	619		619		670		670	
	J	1055		1055		1200		1200	
	N	1110		1110		1450		1450	
	P	7500	12500	7500	12500	11000	16000	11000	16000
	T	81		81		637		637	
	x	350		350		350		350	
	Y	419		419		419		419	
	z	-		-		75		75	
		5000	5500	5100	5600	6200	6700	6300	6800
Hookb	veight(k)	750		750		730		730	

- 26 -

※2 Please contact us for 60 separatty
$\times 3$ Rope specification of 12 2falls is $6 \times$ FFi(29)
OPower supply $\cdots \cdots$ - 3 -phase $200 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ control $200 \mathrm{~V}, 220 \mathrm{~V} 60 \mathrm{~Hz}$ control 220 V
(400 V class is also available) $\cdots 3$-phase $400 \mathrm{v} 50 / 60 \mathrm{~Hz}$ control $200 \mathrm{~V}, 440 \mathrm{~V} 60 \mathrm{~Hz}$ control 220 V
-Operating method $\cdots \cdots$. Push button switch operations $\begin{gathered}3-\text { phase } \\ 380 \mathrm{~V} \\ 50 \mathrm{~V} \\ \text { (} 100 \mathrm{~V} \text { and } 24 \mathrm{~V} \text { are also available) }) ~\end{gathered}$
- Operating method $\cdots \cdots$....Push button switch operations

	$1 / 2 \sim 3 \mathrm{t}$	$5 \sim 45 \mathrm{t}$
Suspended type	2 Points	4 Points
Frame mounted type	UD	ON OFF UD
Motor operated traversing hoist	6 Points	8 Points
	UDEW S N	ON OFF UD E W S

Rating ‥30 min.(JIS C 9620

-Power supply system \cdots Both trolley feeding and cable feeding are available. However, neiter trolley
-Enclosure...Conforming to JIS C 4004 drip

- Enclosure \cdots Conforming to JIS C 4004 drip-proof type(simplified outdoor type)
- Color coating \cdots Main body:Metallic gray (Equivalent to Munsell N 4.0)

Hook block:Munsell7.5YR7/14
Pushbutton:Equivalent to Munsell7.5YR7/13

- Ambient air temperature $\cdots-10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (Non congelation
Ambient air humidity $\cdots 90 \%$ or less(Non condensing)

(Shape of S-1/2-HM)

Note: in the case of troley electric
supppy type, balance weight is re-
quired.

$\mathrm{S}-1 \cdot 2 \cdot 2.8 \cdot 3$
 S-1.2.8.

S-5

Monorail Type

$7.5 t \cdot 10 t \cdot 15 t \cdot 20 t)$

S-7.5 - 10

N

Low-head Type

$1 / 2 t \cdot 1 t \cdot 2 t \cdot 2.8 t \cdot 3 t \cdot 5 t$

Model		S-2.8(3)		s-5	
		LR3A	HR3A	LR3A	HR3A
		2.8 (3)		5	
Litt(m)		6	12	8	12
	A	440	590	646	771
	B	711	861	830	955
	c	650	950	900	1150
	E	680		680	
	F	125		167	
	G	75			
	H	468		517	
	1	605			
	J	410		541	
	N	345		346	
	0	52		346125	
	P	6000	12000	8000	12000
	Q	75		129	
	R	63		65	
	s	35		40	
	T			30	
	v	135	130	97	100
	w	453	753	590	840
	X	150		150	
	Y	175		175	
	z	45			
	(kg)	425	475	660	740
Hook blo	veight(k)	25		42	

$-33-$

-34-

Double rail Type

Double rail Type

Frame mounted Type
$\mathrm{S}-1 \cdot 2 \cdot 2.8 \cdot 3 \cdot 5$

(Shape of 5t)

Model	s-1		s-2		S-2.8(3)		S-5	
	LS2	HS2	LS2	HS2	LS3	HS3	LS3	HS3
Cap.(t)	1		2		2.8 (3)		5	
Litt(m)	6	12	6	12	6	12	8	12
A	287	397	322	415	341	441	646	771
B	518	628	563	657	610	710	830	955
c	345		383		408		410	
D	385	605	420	605	430	630	850	1100
E	435	655	480	665	500	700	920	1170
F	75		88		99		115	
G1/G2	121/84		141/109		170/130		175/45	
H1/H2	151/114		178/445		210/170		220/190	
\bigcirc	23		33		93		125	
咅 K	167		190		216		236	
旁 L	180		225		275		260	
	136		151		181		206	
3 N	330		410		490		420	
$\bigcirc 0$	15		19		24		28	
P	6000	12000	6000	12000	6000	12000	8000	12000
R	60		70		80		90	
s	71	182	58	165	60	166		
T	42	42	49	49	47	47	-	
U	18		24		27		31	
X	107		140		172			
Y	105		150		150		206	
z	36		30		30		30	
Weight(kg)	115	135	175	215	305	345	510	580
Hook block weightikg)	7.5		15		27		42	

Model		\$-7.5		s-10		S-15		$\mathrm{s}-20 \mathrm{HS}$	$\mathrm{S}-30 \mathrm{HS}$
		LS	HS	Ls	HS	Ls	HS		
		7.5		10		15		20	30
Litt(m)		8	12	8	12	8	12	12	12
	A	669	794	719	844	799	949	999	1209
	B	1004	1129	959	1084	1085	1235	1235	1285
	C	493		531		633		663	713
	D	920	1170	920	1170	960	1260	1260	1380
	E	1010	1260	1010	1260	1080	1380	1380	1480
	F	140		150		170		170	200
	G	370		370		500		500	620
	H	470		490		630		640	770
	J	2		12		2		12	12
	K	215		245		295		320	385
	L	290		310		370		395	435
	M	215		245		295		320	355
	N	580		670		810		870	960
	0	35		35		47		47	54
	P	8000	12000	8000	12000	8000	12000	12000	12000
	R	100		120		130		140	150
	U	31		35		41		41	49
	x	188		218		275		308	320
		152		220		220		220	220
	z	50		53		70		70	80
		650	720	1000	1100	1400	1550	1900	3200
Hookble	eight(k)	80		100		190		280	380

Suspended Type (1/2t•1t-2t•2.8t-3t-5t)

$\mathrm{S}-1 / 2 \cdot 1 \cdot 2 \cdot 2.8 \cdot 3 \cdot 5$

Suspended Type
 $(7.5 t \cdot 10 t \cdot 15 t \cdot 20 t)$

S-7.5 $10 \cdot 15 \cdot 20$

For 15 t and 20t. apply above figure

Model		s-7.5		S-10		S-15		$\mathrm{s}-20-\mathrm{HK}$
		LK	нк	LK	нK	LK	нK	
		7.5		10		15		20
Litit m)		8	12	8	12	8	12	12
	A	669	794	719	844	799	949	999
	B	1004	1129	959	1084	1085	1235	1235
	c	458		493		558		583
	E	300		320		620	800	800
	F	55		60		80		100
	G	252		252		225		225
	H	255		290		365		410
	I	120		120		178		217
	J	77		132		167		237
	K	215		245		295		320
	L	796	1046	786	1036	831	1131	1131
	M	440		460		-		-
	N	1165		1380		1680		1800
	-	47		53		78		103
	P	8000	12000	8000	12000	8000	12000	12000
	R	600		660		845		935
	X	188		218		275		308
	Y	152		220		220		220
Weight(kg)		650	720	1000 100 100		1400	1550	1900
		80						280

-40-

Type Series Inverter hoist 1t~2.8t

Inverter technology and creep speed technology are combined to make a variable speed hoist for twenty-first century.

\square Moving pattern by push button operation

400 V class debut

The inside of Control box

Operation image of inverter hoist

- Excellent Operativeness
-Improvement of maintenance
-Effect of conservation of energy
-Excellent cost performance

The new control system which combines Inverter operation and conactor operation for the first time in the industry realises smooth oper ativeness and quick response of stop and speed reduction. In addition, hoist with traversing inverter, high speed can be selected from 4 speed ypes and low speed can be selected from 2 speed types, In comparison with the conventional creep type, the setting range is wider. companson wh he conventonal creep type, the seltng range is wider. ince its structure part is the same as general purpose hoist, the num er of parts decreased signicantly compared wit the co ventiona are made into one board.
s UR type does not use a regenerative resistor it is more powe saving compared to U type. The durability of its brake disk becomes about double in comparison with that of the conventional creep type.

Features(comparison with the U series, conventional creep type hoist)			
Item	UR series	Conventional creep type	U series
Control system (Lifting/Lowering)	Inverter and contactor operation Liting(bboth low and high speed): Tinverter control Lowering at high 解	contactor operation Change two motors with clutch	Inverter
Control system(Traversing)	Inverter	Pole change or two motors	Inverter
Speed setting (Lifting/Lowering)	High speed: Fixed(Normal speed) Low speed: select from 1/10, 1/6, 1/4 of high speed	High speed:Fixed(Normal speed) Low speed: Fixed (1/10 of Normal speed)	Setting is possible at arbitrary speed with high speed, the low speed between $1 / 10$ of normal speed - nomal speed
Speed setting(Traversing)	High speed: select from $25,20,15$, $10 \mathrm{~m} / \mathrm{min}$ Low speed: select from 2.5, $5 / \mathrm{min}$	High speed: Fixed Low speed: Fixed ※Speed ratio 1:1/4 or 1:1/5	Setting is possible at arbitrary speed with high speed, the low speed between $1 / 10$ of normal speed - nomal speed
Respons for the operation	Slow start, Sudden stop*	Sudden start, Sudden stop	Slow start, Slow stop
Operative cost	Medium	High	Low
Power consumption	Low	Low	Medium
Number of parts	Small	Large	Medium

	ecif	ati																								
$\underset{\nabla}{\stackrel{\rightharpoonup}{\top}}$		$\begin{aligned} & \text { 空 } \\ & \hline \end{aligned}$		Wire rope			Hoisting					Traversing														
				Mono-rail - Low hearoom	Double-rail																					
												Speed (m/min)		Motor			Speed (m/min)		Motor			Speed (m/min)		Motor		
				$\begin{aligned} & \text { Output } \\ & (\mathrm{kW}) \end{aligned}$			$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\oplus}{\circ} \end{aligned}$	Output (kW)		$\underset{\text { D }}{\stackrel{\circ}{\varnothing}}$	Output (kW)		$\stackrel{\text { 잉 }}{\text { ¢ }}$													
		$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\stackrel{\text { İ }}{\substack{\text { º }}}$		$\begin{aligned} & \stackrel{N}{N} \\ & \stackrel{\rightharpoonup}{\vec{T}} \end{aligned}$			$\stackrel{\stackrel{\stackrel{\rightharpoonup}{7}}{\stackrel{\rightharpoonup}{5}}}{\underline{\bar{s}}}$	$\begin{aligned} & 50 \\ & \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 60 \\ & \mathrm{~Hz} \end{aligned}$				$\begin{aligned} & 50 \\ & \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 60 \\ & \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 50 \\ & \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 60 \\ & \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 50 \\ & \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 60 \\ & \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 50 \\ & \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 60 \\ & \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 50 \\ & \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 60 \\ & \mathrm{~Hz} \end{aligned}$		
	1			$\begin{aligned} & \phi 8 \\ & * 1 \end{aligned}$	$\begin{gathered} \phi \\ 6.3 \end{gathered}$		$6 \times W(19)$ B class JIS-G3525	6.7	8	1.2	1.4				0.22	0.26		-	-	-	-	-				
R	2	6	12	$\begin{gathered} \phi \\ 10 \end{gathered}$	$\phi 8$				2.2	2.6	4	21	25			4	-	-	-	-	-					
	2.8			$\begin{gathered} \phi \\ 12.5 \end{gathered}$	$\phi 9$				3	3.6							21	25	0.5	0.6	4					

Standard specifications	-Power supply $\cdots 3$-phase $200 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ control 200 V , 220 V 60 Hz control 220 V (400 V class is also available) $\cdots 3$-Phase $400 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ control $200 \mathrm{~V}, 440 \mathrm{~V} 60 \mathrm{~Hz}$ control 220 V 3-Phase 380 V 50 Hz control 48 V (100 V and 24 V are also abailable) -Operating method \cdots Push button switch operations.	
	Suspended type Frame mounted type	1/2~3t
		2 Points
		UD
	Motor operated traversing hoist	6 Points
		UDEWSN
	-Rating $\cdots 30$ min. (JIS C 9620) -Power supply system \cdots Both trolley feeding and cable feeding are available. Howeve, neither trolley nor cable is attached. -Enclosure \cdots Simplified outdoor type(JISC 0920, Equivalent to IP44)	
	(Rainproof cover is required, when it is used in the open air.) OApplicable standard \cdots JIS C 9620 electric hoist/crane structure standard	
	- Color coating …Main body:Metallic gray (Equivalent to MunselliN4.0)	
	Hook block:Munsell 7.5YR7/14	
	Pushbutton:Equivalent to Munsell $7.5 \mathrm{YR7/14}$	
	- Ambient air temperature $\cdots-10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (Non congelation)	
	- Ambient relative humidity $\cdots 90 \%$ or less (Non condensing)	
	Note:These hoists cannot be used for lift (elevator for passengers.)	

Monorail Type
 $-D \circ D$

Mod						$\begin{aligned} & \text { UR-1-1-HNN} \\ & \begin{array}{l} \text { UR-1-HN } \\ R-1-H 0 \end{array} \end{aligned}$					$\begin{aligned} & U R-2-2 H \\ & U_{1}=-2-2 H \end{aligned}$					UR-2.8. UR-2.8- R-2.8.	$\begin{aligned} & \text { HMH2 } \\ & \hline \end{aligned}$					
Cap.(t)			1					2					2.8									
Litt(m)			6		12			6			12		6			12						
		A		283	489			284			485		343			558						
		B		468		507			532		566		565			610						
		c	347					368					393									
		E	200					210					210									
		F1	105			170		115		205			115			205						
		F2		120	170			115			165		115			165						
		K	182					210					210									
		N	730					840					980									
		$01 / 0_{2}$	80/72					114/96					114/96									
		P	6000		12000			6000		12000			6000			12000						
		R	535					585					649									
		s	76			117		73			108		68			115						
		T		49		132$3.0 /(7.5)$		47			130		65			150						
$\frac{\text { Min.rad.curvature(m) }}{\text { Weight(kg) }}$			$1.8(3.0) /(4.5)$					$\frac{3.5 /(8.5)}{260}$		$\frac{2.5 /(6)}{320}$			$\frac{3.5 /(8.5)}{360}$									
			150			170																
Hook block weight(kg)			7.5					15					27									
1 -Beam related dimensions			D	H	J	Q	u	D	H				J	Q	u	D	H	J	Q	\cup		
咅	$150 \times 75 \times 5.5$		360	24	33	140	105	-	-	-	-	-	-	-	-	-	-					
	$200 \times 100 \times 7$		372	48	33	140	155	453	40	31	167	140	-	-	-	-	-					
	$250 \times 125 \times 7.5$		385	74	31	142	203	465	64	29	169	188	465	64	24	169	188					
	$300 \times 150 \times 11.5$							478	90	19	179	228	478	90	14	179	228					
	$\frac{450 \times 175 \times 13}{600 \times 190 \times 13}$		-																			

R-1, UR-1 $1150 \times 75 \times 5.5 \quad 4 . \square$ required special attachme
2.Applicable 1-Beam $\square=$ Standard

Min.rad.cur [] UR Type wietavesing

Double rail Type

$D-D$

Model		$\begin{gathered} \text { UR-2.8-LRH2A } \\ \text { UR-2.8-LRSNA } \\ \text { R-2.8-LR2A } \end{gathered}$		
Cap.(t)		2.8		
Litt(m)		6		
	A	437	K	30
	B	695	L	165
	c	650	N	233
	E	660	P	6000
	F	175	s	15
	G	110	T	15
	H	535	X	150
	1	470	Y	175
	J	556	z	45
Weight(kg)		435		
Hook block weight(kg)		$\frac{25}{12 \mathrm{~kg} \text { rails or 38mm steel square bars }}$		

TIB Inverter control box
 for saddle motor

Feature

1. Reduction of starting \&
stopping shock.
-The swing of load and building is reduced by the smooth inverter performance which restrains th ock of starting and stopping.

. Settable traveling speed

 for efficient operation The optimal operation speed (High and Low speed) can be set in the range from $1 / 10$ to standard speed. - Inching and plugging operations are possible.3. Small body and easy installation. - TIB is equipped with a regenerative resistor unit as a standard equipment, and it can be installed directly to a crane girder with ease.
4. Improved ease
of maintenance In case a defect occurs, the function
that displays failure mode facilitates that displays failure mode facilita
the judgment of locating fault. The main circuit (noncontact) enhances reliability and improves ease of maintenance.
5. Ehhanced safty functions

- In addition to the conventional functions (over load, the protection function of detecting input circuit fault is equipped as a standard.

6. Shared protection

board function (TIB-S) - Circuit breaker box and contactors for Circuit breaker box and contactors for on and off (electric power supply) are
standard equipment. The box can combine with shared protection board for crane.
holes are provided for the contactors of light, buzzer and etc.

Type name and applicable models

Type	Applicable Mistsubishi models			
	Crane saddle		Gear motor for crane sadle	
	ST, SP series	MT, MP series		
TIB-0.8(s)	Output of traveling motor Less than $0.4 \mathrm{~kW} \times 2$		SGM-0.4A-LK2×2	SGM-0.4A-HK2×2
TIB-2.2(s)	Output of traveling motor Less than $0.75 \mathrm{~kW} \times 2$		SGM-0.75A-LK2×2	SGM-0.75A-HK2×2
TIB-4.4(s)	Output of traveling motor Less than $2.2 \mathrm{~kW} \times 2$		SGM-1.5A-LK2×2	SGM-1.5A-HK2×2
			SGM-2.2A-LK×2	SGM-2.2A-HK×2
TIB-7.4(s)	Output of traveling motor Less than $3.7 \mathrm{~kW} \times 2$		SGM-3.7A-LK2×2	SGM-3.7A-LK2×2

Standard specifications		
Power supply		3 -phase $200 \mathrm{~V} 50 / 60 \mathrm{~Hz}, 220 \mathrm{~V} 60 \mathrm{~Hz}{ }^{* 1}$
Control system		Inverter control
Speed ratio		The range of settable speed 1/10 ~ standard speed
Operating method		Push button
Operating functions		Inching \& plugging operations are possible
Percentage of duty cycle and number of starts per Hr (Allowable frequency of usage)		ED percent 25\% ED
		Number of starts per hour $250 \mathrm{~S} / \mathrm{Hr}$
Service condition	Air temperature	$-10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (No congelation)
	Relative humidity	Ambient humidity 90% or less (Non condensation)
	Atmosphere	Non corrosive gas environment, non considerable dust environment
Enclosure		Indoor type (JP20)
Protective functions		Over load, over voltage in regenerative (braking)
Power supply system		Cable feeding
Color coating		Munsell 4.7GY6.06/0.48

Push button operation and operation pattern

TIB-S TYPE

Type	NFB for main power		Contactor for main power	Space for Light, Buzzer and contactor
TIB-0.8S	NF50-CP(50A)	※NF50-CW(30A)	S-N35 ※S-N21	
TIB-2.2S	NF60-SP(60A)	※NF50-CW(30A)	S-N50 ※S-N35	holes are provided
TIB-4.4S	NF225-SP(125A)	※NF100-CW(75A)	S-N80 ※S-N50	for a couple of S-N11 or S-N21.
TIB-7.4S	NF255-SP(175A)	※NF100-CW(100A)	S-N125 ※S-N65	

Function diagram

Outline drawing

<TIB-2.2~7.4>

<TIB-2.2~7.4S>

※400V class series (TIB-H(HS)) are also availabl Contact us for 400 V class outline

Outline dimension table (mm)						
Type	A	B	C	D	E	Approx. weight
TIB-0.8	620	320	226	196	183	14 kg
TIB-2.2	620	220	228	196	204	17 kg
TIB-4.4	690	220	268	236	211	25 kg
TIB-7.4						

Outline dimension table (mm)						
Type	A	B	C	D	E	Approx. weight
TIB-0.8S	690	314	268	236	190	16 kg
TIB-2.2S	730	690	333	120	226	20 kg
TIB-4.4S	760	720	473	250	246	45 kg
TIB-7.4S						
※ In the case of 400 V, the outline dimension of TIB-0.8 and 0.8 S are different from above values. Please contact us.						

Geared motor for crane saddle

 SGM-A
Standard specifications

ower supply : 3 -phase $200 \mathrm{~V} 50 / 60 \mathrm{~Hz}(220 \mathrm{~V} 60 \mathrm{~Hz}$ is available.) With brake
Enclosure : indoor type
Ambient air temperature : $-10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (Non congeration)
Ambient air humidity : 90% or less (Non condensing)
Color coating : Metallic glay
te:(1)SGM-3.7A-HK2 are Made-to-order product.
(2) inertia Moment of permissible load:

Standard type Ten times Ineriai Moment of motor
3)Start accumulator such as inverters is necessary for HK type
\qquad

Line up and ratings

$0.4 \sim 2.2 \mathrm{~kW}$ Standard type(Low speed type, High speed type)
$\underset{\substack{\text { note } \\ \text { N1.Alowance of fixing match of } \\ \phi d \text { is } m \rightarrow \text { Receommended }}}{ }$

$\underset{\substack{(509 M-1.54) \\(56 M-2 A}}{ }$

type	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|} \hline \text { utut } \\ \text { (kW) } \end{array}$	Poles	$\left.\begin{array}{l} \text { Key } \\ \text { Size } \\ (m m) \end{array}\right)$	Dimensions																$\begin{aligned} & \hline \text { Weight } \\ & \text { (kg) } \end{aligned}$
				a	b	d*1	e	f	A	B	c	D*2	E	F	G	н	1	J	к	
SGM-0.4A-LK2.HK2	0.4	4	$\begin{gathered} 10 \times 8 \\ -36 \end{gathered}$	10	8	35	30.0	36	466	75	391	140	50	5	15	70	321	39	129	28
sGM-0.75A-LK2.HK2	0.75								486	75	411	140	50	5	15	70	341	39	135	34
SGM-1.5A.LK2.HK2	1.5								615.5	100	515.5	160	70	5	20	107.	408	46	163	63
SGM-2.2A-LK.HK	2.2		-56	14	9	50	44.5	56	609	100	509	160	70	5	20	107.5	4015	46	172	67

3.7kW Standard Low speed type (Weight:95kg)

(1)Avoid the collision of the saddle to the stopper as much as possible, and instal the buffer in the saddle.

Over load detection device LCV-B
 "Weight Checker"(detection of current)

It prevent and secure safety of the hoist overload work. And it can raise an alarm in case of the overload, stop hoisting motor by detecting the current value of motor.

Corresponondedhoist (t)(S Type)		LCV-20B							LCV:30B		
		1/2	1	2	2.8	5	7.5	10	15	20	30
$\underset{\substack{\text { Hoisting motor } \\(\mathrm{kW})}}{ }$	50 Hz	1.0	2.0	2.9	4.1	6.2	8.3	10	17	17	17
	60Hz	1.2	2.9	3.5	4.9	7.5	10	12	20	20	20

[^0]: Note Appicable l-Beem $\square=$ Standard

